Remark on Transitivity for piecewise increassing maps on R

Descripción del Articulo

In this work a sufficient condition is shown to obtain transitivity in families of piecewise increassing maps with an inevitable discontinuity in x=0. Specifically, it is shown that the characteristics of a large class of transformations of the real line with a discontinuity in x=0 to be transitive...

Descripción completa

Detalles Bibliográficos
Autores: Ruiz Leal, Luis Bladismir, Tineo, Ambrosio, Lugo, Abdul
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3483
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3483
Nivel de acceso:acceso abierto
Materia:Transitivity maps
piecewise increassing maps
vertical asymptote
Funciones transitivas
funciones crecientes por partes
asíntota vertical
Descripción
Sumario:In this work a sufficient condition is shown to obtain transitivity in families of piecewise increassing maps with an inevitable discontinuity in x=0. Specifically, it is shown that the characteristics of a large class of transformations of the real line with a discontinuity in x=0 to be transitive (exhibits a dense orbit), they are the following: f has no fixed points, f has a vertical asymptote at x=0 and the preimage of zero is different from empty. In particular, the famous Boole transformation together with some of its parameterizations they exhibit these characteristics. As a particular case, for the family to a parameter of hyperbolas its dynamic behavior is explicitly determined according to the values of the parameter p > 0.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).