Value of the golden ratio (number Phi) knowing the side length of a square

Descripción del Articulo

This paper explains how to obtain the number phi using a square with side length equal to a, the right triangle with sides a=2 and a, and a circle with radius equal to the hypotenuse of this right triangle. In particular, from a square whose side length is equal to a, we will show how to obtain a se...

Descripción completa

Detalles Bibliográficos
Autores: Orus-Lacort, Mercedes, Jouis, Christophe
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4007
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007
Nivel de acceso:acceso abierto
Materia:Number phi
Golden ratio
Fibonacci
id REVUNITRU_c4e7b3dd3e5d04eaddfb7b57d87e9a4b
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/4007
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Value of the golden ratio (number Phi) knowing the side length of a squareOrus-Lacort, MercedesJouis, ChristopheNumber phiGolden ratioFibonacciThis paper explains how to obtain the number phi using a square with side length equal to a, the right triangle with sides a=2 and a, and a circle with radius equal to the hypotenuse of this right triangle. In particular, from a square whose side length is equal to a, we will show how to obtain a segment b in such a way that the value of a=b is the number phi. It is well known that this ratio is also calculated from equating the ratios obtained by dividing a segment of length a + b by a (being a always the largest segment) and a by b, that is, (a + b)=a = a=b. This equality is a consequence of the ratio of proportionality in triangles applying Thales’s Theorem. And, we must mention also how this golden ratio it is obtained as a consequence of the Fibonacci sequence. However, the golden ratio as a consequence of the limit of Fibonacci sequence was found later than many masterpieces, as for instance the ones of Leonardo da Vinci. This is the main reason because we analyzed how to find the proportionality golden ratio using the most common geometric figures and its symmetries. This paper aims to show how the golden ratio can be obtained knowing the side length a of a square.National University of Trujillo - Academic Department of Mathematics2021-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007Selecciones Matemáticas; Vol. 8 No. 02 (2021): August - December; 404-410Selecciones Matemáticas; Vol. 8 Núm. 02 (2021): Agosto - Diciembre; 404-410Selecciones Matemáticas; v. 8 n. 02 (2021): Agosto - Diciembre; 404-4102411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007/4656Derechos de autor 2021 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/40072022-10-21T18:47:40Z
dc.title.none.fl_str_mv Value of the golden ratio (number Phi) knowing the side length of a square
title Value of the golden ratio (number Phi) knowing the side length of a square
spellingShingle Value of the golden ratio (number Phi) knowing the side length of a square
Orus-Lacort, Mercedes
Number phi
Golden ratio
Fibonacci
title_short Value of the golden ratio (number Phi) knowing the side length of a square
title_full Value of the golden ratio (number Phi) knowing the side length of a square
title_fullStr Value of the golden ratio (number Phi) knowing the side length of a square
title_full_unstemmed Value of the golden ratio (number Phi) knowing the side length of a square
title_sort Value of the golden ratio (number Phi) knowing the side length of a square
dc.creator.none.fl_str_mv Orus-Lacort, Mercedes
Jouis, Christophe
author Orus-Lacort, Mercedes
author_facet Orus-Lacort, Mercedes
Jouis, Christophe
author_role author
author2 Jouis, Christophe
author2_role author
dc.subject.none.fl_str_mv Number phi
Golden ratio
Fibonacci
topic Number phi
Golden ratio
Fibonacci
description This paper explains how to obtain the number phi using a square with side length equal to a, the right triangle with sides a=2 and a, and a circle with radius equal to the hypotenuse of this right triangle. In particular, from a square whose side length is equal to a, we will show how to obtain a segment b in such a way that the value of a=b is the number phi. It is well known that this ratio is also calculated from equating the ratios obtained by dividing a segment of length a + b by a (being a always the largest segment) and a by b, that is, (a + b)=a = a=b. This equality is a consequence of the ratio of proportionality in triangles applying Thales’s Theorem. And, we must mention also how this golden ratio it is obtained as a consequence of the Fibonacci sequence. However, the golden ratio as a consequence of the limit of Fibonacci sequence was found later than many masterpieces, as for instance the ones of Leonardo da Vinci. This is the main reason because we analyzed how to find the proportionality golden ratio using the most common geometric figures and its symmetries. This paper aims to show how the golden ratio can be obtained knowing the side length a of a square.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007/4656
dc.rights.none.fl_str_mv Derechos de autor 2021 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 8 No. 02 (2021): August - December; 404-410
Selecciones Matemáticas; Vol. 8 Núm. 02 (2021): Agosto - Diciembre; 404-410
Selecciones Matemáticas; v. 8 n. 02 (2021): Agosto - Diciembre; 404-410
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841449176380997632
score 13.112182
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).