Value of the golden ratio (number Phi) knowing the side length of a square
Descripción del Articulo
This paper explains how to obtain the number phi using a square with side length equal to a, the right triangle with sides a=2 and a, and a circle with radius equal to the hypotenuse of this right triangle. In particular, from a square whose side length is equal to a, we will show how to obtain a se...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/4007 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007 |
Nivel de acceso: | acceso abierto |
Materia: | Number phi Golden ratio Fibonacci |
id |
REVUNITRU_c4e7b3dd3e5d04eaddfb7b57d87e9a4b |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/4007 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Value of the golden ratio (number Phi) knowing the side length of a squareOrus-Lacort, MercedesJouis, ChristopheNumber phiGolden ratioFibonacciThis paper explains how to obtain the number phi using a square with side length equal to a, the right triangle with sides a=2 and a, and a circle with radius equal to the hypotenuse of this right triangle. In particular, from a square whose side length is equal to a, we will show how to obtain a segment b in such a way that the value of a=b is the number phi. It is well known that this ratio is also calculated from equating the ratios obtained by dividing a segment of length a + b by a (being a always the largest segment) and a by b, that is, (a + b)=a = a=b. This equality is a consequence of the ratio of proportionality in triangles applying Thales’s Theorem. And, we must mention also how this golden ratio it is obtained as a consequence of the Fibonacci sequence. However, the golden ratio as a consequence of the limit of Fibonacci sequence was found later than many masterpieces, as for instance the ones of Leonardo da Vinci. This is the main reason because we analyzed how to find the proportionality golden ratio using the most common geometric figures and its symmetries. This paper aims to show how the golden ratio can be obtained knowing the side length a of a square.National University of Trujillo - Academic Department of Mathematics2021-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007Selecciones Matemáticas; Vol. 8 No. 02 (2021): August - December; 404-410Selecciones Matemáticas; Vol. 8 Núm. 02 (2021): Agosto - Diciembre; 404-410Selecciones Matemáticas; v. 8 n. 02 (2021): Agosto - Diciembre; 404-4102411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007/4656Derechos de autor 2021 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/40072022-10-21T18:47:40Z |
dc.title.none.fl_str_mv |
Value of the golden ratio (number Phi) knowing the side length of a square |
title |
Value of the golden ratio (number Phi) knowing the side length of a square |
spellingShingle |
Value of the golden ratio (number Phi) knowing the side length of a square Orus-Lacort, Mercedes Number phi Golden ratio Fibonacci |
title_short |
Value of the golden ratio (number Phi) knowing the side length of a square |
title_full |
Value of the golden ratio (number Phi) knowing the side length of a square |
title_fullStr |
Value of the golden ratio (number Phi) knowing the side length of a square |
title_full_unstemmed |
Value of the golden ratio (number Phi) knowing the side length of a square |
title_sort |
Value of the golden ratio (number Phi) knowing the side length of a square |
dc.creator.none.fl_str_mv |
Orus-Lacort, Mercedes Jouis, Christophe |
author |
Orus-Lacort, Mercedes |
author_facet |
Orus-Lacort, Mercedes Jouis, Christophe |
author_role |
author |
author2 |
Jouis, Christophe |
author2_role |
author |
dc.subject.none.fl_str_mv |
Number phi Golden ratio Fibonacci |
topic |
Number phi Golden ratio Fibonacci |
description |
This paper explains how to obtain the number phi using a square with side length equal to a, the right triangle with sides a=2 and a, and a circle with radius equal to the hypotenuse of this right triangle. In particular, from a square whose side length is equal to a, we will show how to obtain a segment b in such a way that the value of a=b is the number phi. It is well known that this ratio is also calculated from equating the ratios obtained by dividing a segment of length a + b by a (being a always the largest segment) and a by b, that is, (a + b)=a = a=b. This equality is a consequence of the ratio of proportionality in triangles applying Thales’s Theorem. And, we must mention also how this golden ratio it is obtained as a consequence of the Fibonacci sequence. However, the golden ratio as a consequence of the limit of Fibonacci sequence was found later than many masterpieces, as for instance the ones of Leonardo da Vinci. This is the main reason because we analyzed how to find the proportionality golden ratio using the most common geometric figures and its symmetries. This paper aims to show how the golden ratio can be obtained knowing the side length a of a square. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4007/4656 |
dc.rights.none.fl_str_mv |
Derechos de autor 2021 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2021 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 8 No. 02 (2021): August - December; 404-410 Selecciones Matemáticas; Vol. 8 Núm. 02 (2021): Agosto - Diciembre; 404-410 Selecciones Matemáticas; v. 8 n. 02 (2021): Agosto - Diciembre; 404-410 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841449176380997632 |
score |
13.112182 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).