Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific
Descripción del Articulo
In this work, we consider the primitive equations of an ocean circulation model for the southern pacific, which consists of the time-dependent Navier-Stokes equations in the β-plane coupled with the temperature transport equation. Specifically, the full three-dimensional equations are adopt...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/7082 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7082 |
| Nivel de acceso: | acceso abierto |
| Materia: | Navier-Stokes equations Temperature model Monolithic approach Galerkin finite elements El Niño |
| id |
REVUNITRU_b90b596c18ecde805403e770f499c39e |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/7082 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern PacificNumerical Modeling and Simulations for an Ocean Circulation Model of the Southern PacificHartmann, ThomasStephan, Ernst P.Wick, ThomasNavier-Stokes equationsTemperature modelMonolithic approachGalerkin finite elementsEl NiñoNavier-Stokes equationsTemperature modelMonolithic approachGalerkin finite elementsEl NiñoIn this work, we consider the primitive equations of an ocean circulation model for the southern pacific, which consists of the time-dependent Navier-Stokes equations in the β-plane coupled with the temperature transport equation. Specifically, the full three-dimensional equations are adopted and formulated as a monolithic system of nonstationary, nonlinear, coupled partial differential equations. The El Nino phenomenon is simulated by the action of given wind stresses on the ocean surface. We present an approximation scheme with Crank-Nicolson finite differences in time, and in space we take inf-sup stable Galerkin finite elements for the Navier-Stokes part and bilinear elements for the temperature. We solve the resulting, nonlinear monolithic discrete system by Newton's method. Numerical experiments with realistic geometry and material data are conducted, which show the practicability of our approach.In this work, we consider the primitive equations of an ocean circulation model for the southern pacific, which consists of the time-dependent Navier-Stokes equations in the β-plane coupled with the temperature transport equation. Specifically, the full three-dimensional equations are adopted and formulated as a monolithic system of nonstationary, nonlinear, coupled partial differential equations. The El Nino phenomenon is simulated by the action of given wind stresses on the ocean surface. We present an approximation scheme with Crank-Nicolson finite differences in time, and in space we take inf-sup stable Galerkin finite elements for the Navier-Stokes part and bilinear elements for the temperature. We solve the resulting, nonlinear monolithic discrete system by Newton's method. Numerical experiments with realistic geometry and material data are conducted, which show the practicability of our approach.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7082Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 261 - 272Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 261 - 272Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 261 - 2722411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7082/7104https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/70822025-12-27T01:09:48Z |
| dc.title.none.fl_str_mv |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific |
| title |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific |
| spellingShingle |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific Hartmann, Thomas Navier-Stokes equations Temperature model Monolithic approach Galerkin finite elements El Niño Navier-Stokes equations Temperature model Monolithic approach Galerkin finite elements El Niño |
| title_short |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific |
| title_full |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific |
| title_fullStr |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific |
| title_full_unstemmed |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific |
| title_sort |
Numerical Modeling and Simulations for an Ocean Circulation Model of the Southern Pacific |
| dc.creator.none.fl_str_mv |
Hartmann, Thomas Stephan, Ernst P. Wick, Thomas |
| author |
Hartmann, Thomas |
| author_facet |
Hartmann, Thomas Stephan, Ernst P. Wick, Thomas |
| author_role |
author |
| author2 |
Stephan, Ernst P. Wick, Thomas |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Navier-Stokes equations Temperature model Monolithic approach Galerkin finite elements El Niño Navier-Stokes equations Temperature model Monolithic approach Galerkin finite elements El Niño |
| topic |
Navier-Stokes equations Temperature model Monolithic approach Galerkin finite elements El Niño Navier-Stokes equations Temperature model Monolithic approach Galerkin finite elements El Niño |
| description |
In this work, we consider the primitive equations of an ocean circulation model for the southern pacific, which consists of the time-dependent Navier-Stokes equations in the β-plane coupled with the temperature transport equation. Specifically, the full three-dimensional equations are adopted and formulated as a monolithic system of nonstationary, nonlinear, coupled partial differential equations. The El Nino phenomenon is simulated by the action of given wind stresses on the ocean surface. We present an approximation scheme with Crank-Nicolson finite differences in time, and in space we take inf-sup stable Galerkin finite elements for the Navier-Stokes part and bilinear elements for the temperature. We solve the resulting, nonlinear monolithic discrete system by Newton's method. Numerical experiments with realistic geometry and material data are conducted, which show the practicability of our approach. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7082 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7082 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7082/7104 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 261 - 272 Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 261 - 272 Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 261 - 272 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1852864027979415552 |
| score |
13.9573765 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).