Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
Descripción del Articulo
A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/4383 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383 |
| Nivel de acceso: | acceso abierto |
| Materia: | Agave defibration Factors optimization Genetic algorithms Neural networks Mathematical modeling Agricultural machinery |
| id |
REVUNITRU_afc6ef3c95e9d17a68b66d2578e944c2 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/4383 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredderPérez del Rio, Raudel Hidalgo Reyes, MartínCaballero Caballero, Magdaleno Hernández Gómez, Luís HéctorAgave defibrationFactors optimizationGenetic algorithmsNeural networksMathematical modelingAgricultural machineryAgave defibrationFactors optimizationGenetic algorithmsNeural networksMathematical modelingAgricultural machineryA neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods.Universidad Nacional de Trujillo2022-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 291-299Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 291-2992306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/6746https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/5060Derechos de autor 2022 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/43832022-08-08T14:02:01Z |
| dc.title.none.fl_str_mv |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder |
| title |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder |
| spellingShingle |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder Pérez del Rio, Raudel Agave defibration Factors optimization Genetic algorithms Neural networks Mathematical modeling Agricultural machinery Agave defibration Factors optimization Genetic algorithms Neural networks Mathematical modeling Agricultural machinery |
| title_short |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder |
| title_full |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder |
| title_fullStr |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder |
| title_full_unstemmed |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder |
| title_sort |
Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder |
| dc.creator.none.fl_str_mv |
Pérez del Rio, Raudel Hidalgo Reyes, Martín Caballero Caballero, Magdaleno Hernández Gómez, Luís Héctor |
| author |
Pérez del Rio, Raudel |
| author_facet |
Pérez del Rio, Raudel Hidalgo Reyes, Martín Caballero Caballero, Magdaleno Hernández Gómez, Luís Héctor |
| author_role |
author |
| author2 |
Hidalgo Reyes, Martín Caballero Caballero, Magdaleno Hernández Gómez, Luís Héctor |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Agave defibration Factors optimization Genetic algorithms Neural networks Mathematical modeling Agricultural machinery Agave defibration Factors optimization Genetic algorithms Neural networks Mathematical modeling Agricultural machinery |
| topic |
Agave defibration Factors optimization Genetic algorithms Neural networks Mathematical modeling Agricultural machinery Agave defibration Factors optimization Genetic algorithms Neural networks Mathematical modeling Agricultural machinery |
| description |
A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-10-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383 |
| url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/6746 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/5060 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2022 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2022 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
| dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 291-299 Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 291-299 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1852228702567399424 |
| score |
13.058981 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).