Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder

Descripción del Articulo

A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear...

Descripción completa

Detalles Bibliográficos
Autores: Pérez del Rio, Raudel, Hidalgo Reyes, Martín, Caballero Caballero, Magdaleno, Hernández Gómez, Luís Héctor
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4383
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383
Nivel de acceso:acceso abierto
Materia:Agave defibration
Factors optimization
Genetic algorithms
Neural networks
Mathematical modeling
Agricultural machinery
id REVUNITRU_afc6ef3c95e9d17a68b66d2578e944c2
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/4383
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredderPérez del Rio, Raudel Hidalgo Reyes, MartínCaballero Caballero, Magdaleno Hernández Gómez, Luís HéctorAgave defibrationFactors optimizationGenetic algorithmsNeural networksMathematical modelingAgricultural machineryAgave defibrationFactors optimizationGenetic algorithmsNeural networksMathematical modelingAgricultural machineryA neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods.Universidad Nacional de Trujillo2022-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 291-299Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 291-2992306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/6746https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/5060Derechos de autor 2022 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/43832022-08-08T14:02:01Z
dc.title.none.fl_str_mv Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
title Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
spellingShingle Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
Pérez del Rio, Raudel
Agave defibration
Factors optimization
Genetic algorithms
Neural networks
Mathematical modeling
Agricultural machinery
Agave defibration
Factors optimization
Genetic algorithms
Neural networks
Mathematical modeling
Agricultural machinery
title_short Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
title_full Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
title_fullStr Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
title_full_unstemmed Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
title_sort Multi-objective optimization through artificial intelligence for designing of an Agave angustifolia leaf shredder
dc.creator.none.fl_str_mv Pérez del Rio, Raudel
Hidalgo Reyes, Martín
Caballero Caballero, Magdaleno
Hernández Gómez, Luís Héctor
author Pérez del Rio, Raudel
author_facet Pérez del Rio, Raudel
Hidalgo Reyes, Martín
Caballero Caballero, Magdaleno
Hernández Gómez, Luís Héctor
author_role author
author2 Hidalgo Reyes, Martín
Caballero Caballero, Magdaleno
Hernández Gómez, Luís Héctor
author2_role author
author
author
dc.subject.none.fl_str_mv Agave defibration
Factors optimization
Genetic algorithms
Neural networks
Mathematical modeling
Agricultural machinery
Agave defibration
Factors optimization
Genetic algorithms
Neural networks
Mathematical modeling
Agricultural machinery
topic Agave defibration
Factors optimization
Genetic algorithms
Neural networks
Mathematical modeling
Agricultural machinery
Agave defibration
Factors optimization
Genetic algorithms
Neural networks
Mathematical modeling
Agricultural machinery
description A neural network and a genetic algorithm were used in a hybrid method to get the optimal design parameters of an Agave angustifolia Haw. green leaf shredder. First, a prototype of an experimental machine was built using the design parameters recommended by the literature and calculated using linear equations. Then, the shredder prototype was subjected to experiments. The defibration data with different blade adjustments were obtained with experimental values. The data was configured and trained with an artificial neural network to establish a correlation between the defibration quality and the design parameters. The multi-objective optimization method based on genetic algorithms determined the optimal design parameters of the shredder’s functional mechanical elements. The best point was obtained from the least number of broken fibers (2.83%) and the most waste (73.15%). The method used proved suitable to optimize the design parameters; this was based on actual data obtained by experiments performed with the prototype and then modeled through artificial intelligence methods such as neural networks to determine an optimal solution using evolutionary genetic algorithm methods.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/6746
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4383/5060
dc.rights.none.fl_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 13 Núm. 3 (2022): julio-septiembre; 291-299
Scientia Agropecuaria; Vol. 13 No. 3 (2022): julio-septiembre; 291-299
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1852228702567399424
score 13.058981
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).