Semigroups of class Co on l2(Z)

Descripción del Articulo

In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space...

Descripción completa

Detalles Bibliográficos
Autor: Santiago Ayala, Yolanda
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5560
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560
Nivel de acceso:acceso abierto
Materia:l2(Z) space
Hellinger-Toeplitz theorem
generalized multipli- cation operator
Semigroup of contraction
graph norm
id REVUNITRU_a76c5c9ffea59c1047e43e0254f9fa2a
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5560
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Semigroups of class Co on l2(Z)Semigrupos de clase Co en l2(Z)Santiago Ayala, Yolandal2(Z) spaceHellinger-Toeplitz theoremgeneralized multipli- cation operatorSemigroup of contractiongraph norm In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space with n even and demonstrate that it forms a contraction semigroup of class Co, having −M as its infinitesimal generator. We also prove that if we restrict the domains of that family of operators, they still remain a contraction semigroup. Finally, we give results of existence of solution of the associated abstract Cauchy problem and properties of continuous dependence of the solution in connection to other norms. En este trabajo, iniciamos estudiando al operador multiplicación generalizado M en el espacio l2(Z). Probamos que este operador no es acotado, es densamente definida y simétrica y por lo tanto no admite una extensión lineal simétrica a todo el espacio. Introducimos una familia de operadores en el espacio l2(Z) con n par y demostramos que esta forma un semigrupo de contracción de clase Co, teniendo a -M como su generador infinitesimal. Probamos también que si restringimos los dominios de esa familia de operadores estas aún conservan ser un semigrupo de contracción.Finalmente, damos resultados de existencia de solución del problema de Cauchy abstracto asociado y propiedades de dependencia continua de la solución en conexión a otras normas. National University of Trujillo - Academic Department of Mathematics2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 273 - 284Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 273 - 284Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 273 - 2842411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560/5792Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/55602023-12-27T14:40:03Z
dc.title.none.fl_str_mv Semigroups of class Co on l2(Z)
Semigrupos de clase Co en l2(Z)
title Semigroups of class Co on l2(Z)
spellingShingle Semigroups of class Co on l2(Z)
Santiago Ayala, Yolanda
l2(Z) space
Hellinger-Toeplitz theorem
generalized multipli- cation operator
Semigroup of contraction
graph norm
title_short Semigroups of class Co on l2(Z)
title_full Semigroups of class Co on l2(Z)
title_fullStr Semigroups of class Co on l2(Z)
title_full_unstemmed Semigroups of class Co on l2(Z)
title_sort Semigroups of class Co on l2(Z)
dc.creator.none.fl_str_mv Santiago Ayala, Yolanda
author Santiago Ayala, Yolanda
author_facet Santiago Ayala, Yolanda
author_role author
dc.subject.none.fl_str_mv l2(Z) space
Hellinger-Toeplitz theorem
generalized multipli- cation operator
Semigroup of contraction
graph norm
topic l2(Z) space
Hellinger-Toeplitz theorem
generalized multipli- cation operator
Semigroup of contraction
graph norm
description In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space with n even and demonstrate that it forms a contraction semigroup of class Co, having −M as its infinitesimal generator. We also prove that if we restrict the domains of that family of operators, they still remain a contraction semigroup. Finally, we give results of existence of solution of the associated abstract Cauchy problem and properties of continuous dependence of the solution in connection to other norms.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560/5792
dc.rights.none.fl_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 273 - 284
Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 273 - 284
Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 273 - 284
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1852864026701201408
score 13.143719
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).