Semigroups of class Co on l2(Z)
Descripción del Articulo
In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5560 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560 |
| Nivel de acceso: | acceso abierto |
| Materia: | l2(Z) space Hellinger-Toeplitz theorem generalized multipli- cation operator Semigroup of contraction graph norm |
| id |
REVUNITRU_a76c5c9ffea59c1047e43e0254f9fa2a |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5560 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Semigroups of class Co on l2(Z)Semigrupos de clase Co en l2(Z)Santiago Ayala, Yolandal2(Z) spaceHellinger-Toeplitz theoremgeneralized multipli- cation operatorSemigroup of contractiongraph norm In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space with n even and demonstrate that it forms a contraction semigroup of class Co, having −M as its infinitesimal generator. We also prove that if we restrict the domains of that family of operators, they still remain a contraction semigroup. Finally, we give results of existence of solution of the associated abstract Cauchy problem and properties of continuous dependence of the solution in connection to other norms. En este trabajo, iniciamos estudiando al operador multiplicación generalizado M en el espacio l2(Z). Probamos que este operador no es acotado, es densamente definida y simétrica y por lo tanto no admite una extensión lineal simétrica a todo el espacio. Introducimos una familia de operadores en el espacio l2(Z) con n par y demostramos que esta forma un semigrupo de contracción de clase Co, teniendo a -M como su generador infinitesimal. Probamos también que si restringimos los dominios de esa familia de operadores estas aún conservan ser un semigrupo de contracción.Finalmente, damos resultados de existencia de solución del problema de Cauchy abstracto asociado y propiedades de dependencia continua de la solución en conexión a otras normas. National University of Trujillo - Academic Department of Mathematics2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 273 - 284Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 273 - 284Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 273 - 2842411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560/5792Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/55602023-12-27T14:40:03Z |
| dc.title.none.fl_str_mv |
Semigroups of class Co on l2(Z) Semigrupos de clase Co en l2(Z) |
| title |
Semigroups of class Co on l2(Z) |
| spellingShingle |
Semigroups of class Co on l2(Z) Santiago Ayala, Yolanda l2(Z) space Hellinger-Toeplitz theorem generalized multipli- cation operator Semigroup of contraction graph norm |
| title_short |
Semigroups of class Co on l2(Z) |
| title_full |
Semigroups of class Co on l2(Z) |
| title_fullStr |
Semigroups of class Co on l2(Z) |
| title_full_unstemmed |
Semigroups of class Co on l2(Z) |
| title_sort |
Semigroups of class Co on l2(Z) |
| dc.creator.none.fl_str_mv |
Santiago Ayala, Yolanda |
| author |
Santiago Ayala, Yolanda |
| author_facet |
Santiago Ayala, Yolanda |
| author_role |
author |
| dc.subject.none.fl_str_mv |
l2(Z) space Hellinger-Toeplitz theorem generalized multipli- cation operator Semigroup of contraction graph norm |
| topic |
l2(Z) space Hellinger-Toeplitz theorem generalized multipli- cation operator Semigroup of contraction graph norm |
| description |
In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space with n even and demonstrate that it forms a contraction semigroup of class Co, having −M as its infinitesimal generator. We also prove that if we restrict the domains of that family of operators, they still remain a contraction semigroup. Finally, we give results of existence of solution of the associated abstract Cauchy problem and properties of continuous dependence of the solution in connection to other norms. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5560/5792 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 273 - 284 Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 273 - 284 Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 273 - 284 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1852864026701201408 |
| score |
13.143719 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).