The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry

Descripción del Articulo

Calculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differen...

Descripción completa

Detalles Bibliográficos
Autor: Mwinken, Delphin
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6163
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163
Nivel de acceso:acceso abierto
Materia:Calculus of variations
functional optimization
partial differential equations
id REVUNITRU_97e8f6b0ec3d611c086e0f61d8ca0022
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6163
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential GeometryMwinken, DelphinCalculus of variationsfunctional optimizationpartial differential equationsCalculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differential geometry. In PDEs, calculus of variations provides methods to find functions that minimize energy functionals, leading to solutions of various physical problems. In differential geometry, it helps understand the properties of curves and surfaces, such as geodesics, by minimizing arc-length functionals. This paper explores the intrinsic connections between these areas, highlighting key principles such as the Euler-Lagrange equation, Ekeland’s variational principle, and the Mountain Pass theorem, and their applications in solving PDEsand understanding geometrical structures.National University of Trujillo - Academic Department of Mathematics2024-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 393 - 408Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 393 - 408Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 393 - 4082411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163/6266https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/61632024-12-28T04:55:24Z
dc.title.none.fl_str_mv The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
title The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
spellingShingle The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
Mwinken, Delphin
Calculus of variations
functional optimization
partial differential equations
title_short The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
title_full The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
title_fullStr The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
title_full_unstemmed The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
title_sort The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
dc.creator.none.fl_str_mv Mwinken, Delphin
author Mwinken, Delphin
author_facet Mwinken, Delphin
author_role author
dc.subject.none.fl_str_mv Calculus of variations
functional optimization
partial differential equations
topic Calculus of variations
functional optimization
partial differential equations
description Calculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differential geometry. In PDEs, calculus of variations provides methods to find functions that minimize energy functionals, leading to solutions of various physical problems. In differential geometry, it helps understand the properties of curves and surfaces, such as geodesics, by minimizing arc-length functionals. This paper explores the intrinsic connections between these areas, highlighting key principles such as the Euler-Lagrange equation, Ekeland’s variational principle, and the Mountain Pass theorem, and their applications in solving PDEsand understanding geometrical structures.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163/6266
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 393 - 408
Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 393 - 408
Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 393 - 408
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843350211783557120
score 12.860346
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).