The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry
Descripción del Articulo
Calculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differen...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6163 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163 |
Nivel de acceso: | acceso abierto |
Materia: | Calculus of variations functional optimization partial differential equations |
id |
REVUNITRU_97e8f6b0ec3d611c086e0f61d8ca0022 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6163 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential GeometryMwinken, DelphinCalculus of variationsfunctional optimizationpartial differential equationsCalculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differential geometry. In PDEs, calculus of variations provides methods to find functions that minimize energy functionals, leading to solutions of various physical problems. In differential geometry, it helps understand the properties of curves and surfaces, such as geodesics, by minimizing arc-length functionals. This paper explores the intrinsic connections between these areas, highlighting key principles such as the Euler-Lagrange equation, Ekeland’s variational principle, and the Mountain Pass theorem, and their applications in solving PDEsand understanding geometrical structures.National University of Trujillo - Academic Department of Mathematics2024-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por paresapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 393 - 408Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 393 - 408Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 393 - 4082411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163/6266https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/61632024-12-28T04:55:24Z |
dc.title.none.fl_str_mv |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry |
title |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry |
spellingShingle |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry Mwinken, Delphin Calculus of variations functional optimization partial differential equations |
title_short |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry |
title_full |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry |
title_fullStr |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry |
title_full_unstemmed |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry |
title_sort |
The Interconnection Between Calculus of Variations, Partial Differential Equations and Differential Geometry |
dc.creator.none.fl_str_mv |
Mwinken, Delphin |
author |
Mwinken, Delphin |
author_facet |
Mwinken, Delphin |
author_role |
author |
dc.subject.none.fl_str_mv |
Calculus of variations functional optimization partial differential equations |
topic |
Calculus of variations functional optimization partial differential equations |
description |
Calculus of variations is a fundamental mathematical discipline focused on optimizing functionals, which map sets of functions to real numbers. This field is essential for numerous applications, including the formulation and solution of partial differential equations (PDEs) and the study of differential geometry. In PDEs, calculus of variations provides methods to find functions that minimize energy functionals, leading to solutions of various physical problems. In differential geometry, it helps understand the properties of curves and surfaces, such as geodesics, by minimizing arc-length functionals. This paper explores the intrinsic connections between these areas, highlighting key principles such as the Euler-Lagrange equation, Ekeland’s variational principle, and the Mountain Pass theorem, and their applications in solving PDEsand understanding geometrical structures. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6163/6266 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 11 No. 02 (2024): August - December; 393 - 408 Selecciones Matemáticas; Vol. 11 Núm. 02 (2024): Agosto - Diciembre; 393 - 408 Selecciones Matemáticas; v. 11 n. 02 (2024): Agosto - Dezembro; 393 - 408 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1843350211783557120 |
score |
12.860346 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).