Artificial intelligence in aquaculture: basis, applications, and future perspectives

Descripción del Articulo

Advances in data management technologies are being adapted to resolve difficulties and impacts that aquaculture manifests, some aspects that over the years have not been fully managed, are now more feasible to solve, such as the optimization of variables that intervene in the growth and increase of...

Descripción completa

Detalles Bibliográficos
Autores: Vásquez-Quispesivana, Wilfredo, Inga, Marianela, Betalleluz-Pallardel, Indira
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4350
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350
Nivel de acceso:acceso abierto
Materia:Acuicultura
inteligencia artificial
redes neuronales
aprendizaje automático
aprendizaje profundo
optimización
Aquaculture
artificial intelligence
neural networks
machine learning
deep learning
optimization
id REVUNITRU_870df62e1b3d0d1ed1e9085924e0d876
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/4350
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv Artificial intelligence in aquaculture: basis, applications, and future perspectives
Inteligencia artificial en acuicultura: fundamentos, aplicaciones y perspectivas futuras
title Artificial intelligence in aquaculture: basis, applications, and future perspectives
spellingShingle Artificial intelligence in aquaculture: basis, applications, and future perspectives
Vásquez-Quispesivana, Wilfredo
Acuicultura
inteligencia artificial
redes neuronales
aprendizaje automático
aprendizaje profundo
optimización
Aquaculture
artificial intelligence
neural networks
machine learning
deep learning
optimization
title_short Artificial intelligence in aquaculture: basis, applications, and future perspectives
title_full Artificial intelligence in aquaculture: basis, applications, and future perspectives
title_fullStr Artificial intelligence in aquaculture: basis, applications, and future perspectives
title_full_unstemmed Artificial intelligence in aquaculture: basis, applications, and future perspectives
title_sort Artificial intelligence in aquaculture: basis, applications, and future perspectives
dc.creator.none.fl_str_mv Vásquez-Quispesivana, Wilfredo
Inga, Marianela
Betalleluz-Pallardel, Indira
author Vásquez-Quispesivana, Wilfredo
author_facet Vásquez-Quispesivana, Wilfredo
Inga, Marianela
Betalleluz-Pallardel, Indira
author_role author
author2 Inga, Marianela
Betalleluz-Pallardel, Indira
author2_role author
author
dc.subject.none.fl_str_mv Acuicultura
inteligencia artificial
redes neuronales
aprendizaje automático
aprendizaje profundo
optimización
Aquaculture
artificial intelligence
neural networks
machine learning
deep learning
optimization
topic Acuicultura
inteligencia artificial
redes neuronales
aprendizaje automático
aprendizaje profundo
optimización
Aquaculture
artificial intelligence
neural networks
machine learning
deep learning
optimization
description Advances in data management technologies are being adapted to resolve difficulties and impacts that aquaculture manifests, some aspects that over the years have not been fully managed, are now more feasible to solve, such as the optimization of variables that intervene in the growth and increase of biomass, the prediction of water quality parameters to manage and make decisions during farming fish, the evaluation of the aquaculture environment and the impact generated by aquaculture, the diagnosis of diseases in aquaculture fish to determine more specific treatments, handling, management and closure of aquaculture farms. The objective of this article was to review within the last 20 years the various techniques, methodologies, models, algorithms, software, and devices that are used within artificial intelligence, machine learning and deep learning systems, to solve in a simpler way, quickly and precisely the difficulties and impacts that aquaculture manifests. In addition, the fundamentals of artificial intelligence, automatic learning and deep learning are explained, as well as the recommendations for future study on areas of interest in aquaculture, such as  the reduction of production costs through the optimization of feeding based on good aquaculture practices and parameters of water quality, the identification of sex in fish that do not present sexual dimorphism, the determination of quality attributes such as the degree of pigmentation in salmon and trout.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artículo evaluado por pares
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/6799
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/4802
dc.rights.none.fl_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 13 Núm. 1 (2022): Enero - Marzo; 79-96
Scientia Agropecuaria; Vol. 13 No. 1 (2022): Enero - Marzo; 79-96
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843350188807159808
spelling Artificial intelligence in aquaculture: basis, applications, and future perspectivesInteligencia artificial en acuicultura: fundamentos, aplicaciones y perspectivas futurasVásquez-Quispesivana, Wilfredo Inga, Marianela Betalleluz-Pallardel, Indira Acuiculturainteligencia artificialredes neuronalesaprendizaje automáticoaprendizaje profundooptimizaciónAquacultureartificial intelligenceneural networksmachine learningdeep learningoptimizationAdvances in data management technologies are being adapted to resolve difficulties and impacts that aquaculture manifests, some aspects that over the years have not been fully managed, are now more feasible to solve, such as the optimization of variables that intervene in the growth and increase of biomass, the prediction of water quality parameters to manage and make decisions during farming fish, the evaluation of the aquaculture environment and the impact generated by aquaculture, the diagnosis of diseases in aquaculture fish to determine more specific treatments, handling, management and closure of aquaculture farms. The objective of this article was to review within the last 20 years the various techniques, methodologies, models, algorithms, software, and devices that are used within artificial intelligence, machine learning and deep learning systems, to solve in a simpler way, quickly and precisely the difficulties and impacts that aquaculture manifests. In addition, the fundamentals of artificial intelligence, automatic learning and deep learning are explained, as well as the recommendations for future study on areas of interest in aquaculture, such as  the reduction of production costs through the optimization of feeding based on good aquaculture practices and parameters of water quality, the identification of sex in fish that do not present sexual dimorphism, the determination of quality attributes such as the degree of pigmentation in salmon and trout.Los avances en las tecnologías de manejo de datos se están adecuando a resolver dificultades e impactos que la acuicultura manifiesta, algunos aspectos que a través de los años no se han podido manejar plenamente, ahora son más factibles de resolver, como la optimización de las variables que intervienen en el crecimiento e incremento de biomasa, la predicción de parámetros de calidad de agua para manejar y tomar decisiones durante el cultivo, la evaluación del medio ambiente acuícola y el impacto que genera la acuicultura, el diagnóstico de enfermedades de los peces para determinar tratamientos más puntuales, el manejo, gestión y cierre de granjas acuícolas. El objetivo del presente artículo fue revisar dentro de los últimos 20 años las diversas técnicas, metodologías, modelos, algoritmos, softwares y dispositivos que se utilizan dentro de los sistemas de inteligencia artificial, aprendizaje automático y aprendizaje profundo, para resolver de una manera más sencilla, rápida y precisa las dificultades e impactos que la acuicultura evidencia. Además, se explican los fundamentos de la inteligencia artificial, aprendizaje automático y aprendizaje profundo, así también las recomendaciones de estudio futuro sobre áreas de interés en acuicultura, como la reducción de los costos de producción mediante la optimización de la alimentación en función de las buenas prácticas de acuicultura y parámetros de calidad de agua, la identificación del sexo en peces que no presentan dimorfismo sexual, la determinación de atributos de calidad como el grado de pigmentación en salmones y truchas.Universidad Nacional de Trujillo2022-03-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por parestext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350Scientia Agropecuaria; Vol. 13 Núm. 1 (2022): Enero - Marzo; 79-96Scientia Agropecuaria; Vol. 13 No. 1 (2022): Enero - Marzo; 79-962306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/6799https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/4802Derechos de autor 2022 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/43502022-05-18T07:29:17Z
score 13.210282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).