Artificial intelligence in aquaculture: basis, applications, and future perspectives
Descripción del Articulo
Advances in data management technologies are being adapted to resolve difficulties and impacts that aquaculture manifests, some aspects that over the years have not been fully managed, are now more feasible to solve, such as the optimization of variables that intervene in the growth and increase of...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/4350 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350 |
Nivel de acceso: | acceso abierto |
Materia: | Acuicultura inteligencia artificial redes neuronales aprendizaje automático aprendizaje profundo optimización Aquaculture artificial intelligence neural networks machine learning deep learning optimization |
id |
REVUNITRU_870df62e1b3d0d1ed1e9085924e0d876 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/4350 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
dc.title.none.fl_str_mv |
Artificial intelligence in aquaculture: basis, applications, and future perspectives Inteligencia artificial en acuicultura: fundamentos, aplicaciones y perspectivas futuras |
title |
Artificial intelligence in aquaculture: basis, applications, and future perspectives |
spellingShingle |
Artificial intelligence in aquaculture: basis, applications, and future perspectives Vásquez-Quispesivana, Wilfredo Acuicultura inteligencia artificial redes neuronales aprendizaje automático aprendizaje profundo optimización Aquaculture artificial intelligence neural networks machine learning deep learning optimization |
title_short |
Artificial intelligence in aquaculture: basis, applications, and future perspectives |
title_full |
Artificial intelligence in aquaculture: basis, applications, and future perspectives |
title_fullStr |
Artificial intelligence in aquaculture: basis, applications, and future perspectives |
title_full_unstemmed |
Artificial intelligence in aquaculture: basis, applications, and future perspectives |
title_sort |
Artificial intelligence in aquaculture: basis, applications, and future perspectives |
dc.creator.none.fl_str_mv |
Vásquez-Quispesivana, Wilfredo Inga, Marianela Betalleluz-Pallardel, Indira |
author |
Vásquez-Quispesivana, Wilfredo |
author_facet |
Vásquez-Quispesivana, Wilfredo Inga, Marianela Betalleluz-Pallardel, Indira |
author_role |
author |
author2 |
Inga, Marianela Betalleluz-Pallardel, Indira |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Acuicultura inteligencia artificial redes neuronales aprendizaje automático aprendizaje profundo optimización Aquaculture artificial intelligence neural networks machine learning deep learning optimization |
topic |
Acuicultura inteligencia artificial redes neuronales aprendizaje automático aprendizaje profundo optimización Aquaculture artificial intelligence neural networks machine learning deep learning optimization |
description |
Advances in data management technologies are being adapted to resolve difficulties and impacts that aquaculture manifests, some aspects that over the years have not been fully managed, are now more feasible to solve, such as the optimization of variables that intervene in the growth and increase of biomass, the prediction of water quality parameters to manage and make decisions during farming fish, the evaluation of the aquaculture environment and the impact generated by aquaculture, the diagnosis of diseases in aquaculture fish to determine more specific treatments, handling, management and closure of aquaculture farms. The objective of this article was to review within the last 20 years the various techniques, methodologies, models, algorithms, software, and devices that are used within artificial intelligence, machine learning and deep learning systems, to solve in a simpler way, quickly and precisely the difficulties and impacts that aquaculture manifests. In addition, the fundamentals of artificial intelligence, automatic learning and deep learning are explained, as well as the recommendations for future study on areas of interest in aquaculture, such as the reduction of production costs through the optimization of feeding based on good aquaculture practices and parameters of water quality, the identification of sex in fish that do not present sexual dimorphism, the determination of quality attributes such as the degree of pigmentation in salmon and trout. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/6799 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/4802 |
dc.rights.none.fl_str_mv |
Derechos de autor 2022 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2022 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 13 Núm. 1 (2022): Enero - Marzo; 79-96 Scientia Agropecuaria; Vol. 13 No. 1 (2022): Enero - Marzo; 79-96 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1843350188807159808 |
spelling |
Artificial intelligence in aquaculture: basis, applications, and future perspectivesInteligencia artificial en acuicultura: fundamentos, aplicaciones y perspectivas futurasVásquez-Quispesivana, Wilfredo Inga, Marianela Betalleluz-Pallardel, Indira Acuiculturainteligencia artificialredes neuronalesaprendizaje automáticoaprendizaje profundooptimizaciónAquacultureartificial intelligenceneural networksmachine learningdeep learningoptimizationAdvances in data management technologies are being adapted to resolve difficulties and impacts that aquaculture manifests, some aspects that over the years have not been fully managed, are now more feasible to solve, such as the optimization of variables that intervene in the growth and increase of biomass, the prediction of water quality parameters to manage and make decisions during farming fish, the evaluation of the aquaculture environment and the impact generated by aquaculture, the diagnosis of diseases in aquaculture fish to determine more specific treatments, handling, management and closure of aquaculture farms. The objective of this article was to review within the last 20 years the various techniques, methodologies, models, algorithms, software, and devices that are used within artificial intelligence, machine learning and deep learning systems, to solve in a simpler way, quickly and precisely the difficulties and impacts that aquaculture manifests. In addition, the fundamentals of artificial intelligence, automatic learning and deep learning are explained, as well as the recommendations for future study on areas of interest in aquaculture, such as the reduction of production costs through the optimization of feeding based on good aquaculture practices and parameters of water quality, the identification of sex in fish that do not present sexual dimorphism, the determination of quality attributes such as the degree of pigmentation in salmon and trout.Los avances en las tecnologías de manejo de datos se están adecuando a resolver dificultades e impactos que la acuicultura manifiesta, algunos aspectos que a través de los años no se han podido manejar plenamente, ahora son más factibles de resolver, como la optimización de las variables que intervienen en el crecimiento e incremento de biomasa, la predicción de parámetros de calidad de agua para manejar y tomar decisiones durante el cultivo, la evaluación del medio ambiente acuícola y el impacto que genera la acuicultura, el diagnóstico de enfermedades de los peces para determinar tratamientos más puntuales, el manejo, gestión y cierre de granjas acuícolas. El objetivo del presente artículo fue revisar dentro de los últimos 20 años las diversas técnicas, metodologías, modelos, algoritmos, softwares y dispositivos que se utilizan dentro de los sistemas de inteligencia artificial, aprendizaje automático y aprendizaje profundo, para resolver de una manera más sencilla, rápida y precisa las dificultades e impactos que la acuicultura evidencia. Además, se explican los fundamentos de la inteligencia artificial, aprendizaje automático y aprendizaje profundo, así también las recomendaciones de estudio futuro sobre áreas de interés en acuicultura, como la reducción de los costos de producción mediante la optimización de la alimentación en función de las buenas prácticas de acuicultura y parámetros de calidad de agua, la identificación del sexo en peces que no presentan dimorfismo sexual, la determinación de atributos de calidad como el grado de pigmentación en salmones y truchas.Universidad Nacional de Trujillo2022-03-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículo evaluado por parestext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350Scientia Agropecuaria; Vol. 13 Núm. 1 (2022): Enero - Marzo; 79-96Scientia Agropecuaria; Vol. 13 No. 1 (2022): Enero - Marzo; 79-962306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/6799https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4350/4802Derechos de autor 2022 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/43502022-05-18T07:29:17Z |
score |
13.210282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).