Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
Descripción del Articulo
Stochastic processes with the long-range dependency (LRD) property are fundamental to modeling data that exhibit slow power decay of the covariance function. Such behavior often appears in the analysis of financial data, telecommunications, and various natural phenomena. Thus, introducing new stoch...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5981 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981 |
Nivel de acceso: | acceso abierto |
Materia: | Fractionally Integrated Moving Average processes, long-range dependence quadratic Ornstein-Uhlenbeck type processes |
id |
REVUNITRU_74859f72eb38c73483af1f8ed024c988 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5981 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependencede Medeiros, Jonas F.Karling, Maicon J.C. Lopes, Silvia ReginaFeltes, Guilherme L.Fractionally Integrated Moving Average processes,long-range dependencequadratic Ornstein-Uhlenbeck type processesStochastic processes with the long-range dependency (LRD) property are fundamental to modeling data that exhibit slow power decay of the covariance function. Such behavior often appears in the analysis of financial data, telecommunications, and various natural phenomena. Thus, introducing new stochastic models and statistical methods that take the LRD into account is of great interest. Based on previous work, we introduce a new stochastic process called quadratic fractionally integrated moving average, that arises from the Quadratic Ornstein-Uhlenbeck Type (QOUT) process, proposed in the literature. We consider Lévy noises of finite second-order moments and use a construction based on a moving average stochastic process whose kernel is that of a QOUT process. Then, using Riemann-Liouville fractional integrals, we propose a fractionally integrated moving average process, for which we highlight some results, including the LRD. We also propose the estimation of the parameters for this process for the case of fractional Brownian noise, showing its efficiency through a Monte Carlo simulation. By an application based on Brazil’s stock market prices, we illustrate how this process can be used in practice with the Sao Paulo’s Stock Exchange Index data set, also known as the BOVESPA Index.National University of Trujillo - Academic Department of Mathematics2024-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981Selecciones Matemáticas; Vol. 11 No. 01 (2024): January - July; 1 - 19Selecciones Matemáticas; Vol. 11 Núm. 01 (2024): Enero - Julio; 1 - 19Selecciones Matemáticas; v. 11 n. 01 (2024): Janeiro - Julho; 1 - 192411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981/6015Derechos de autor 2024 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/59812024-07-29T16:50:33Z |
dc.title.none.fl_str_mv |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence |
title |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence |
spellingShingle |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence de Medeiros, Jonas F. Fractionally Integrated Moving Average processes, long-range dependence quadratic Ornstein-Uhlenbeck type processes |
title_short |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence |
title_full |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence |
title_fullStr |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence |
title_full_unstemmed |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence |
title_sort |
Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence |
dc.creator.none.fl_str_mv |
de Medeiros, Jonas F. Karling, Maicon J. C. Lopes, Silvia Regina Feltes, Guilherme L. |
author |
de Medeiros, Jonas F. |
author_facet |
de Medeiros, Jonas F. Karling, Maicon J. C. Lopes, Silvia Regina Feltes, Guilherme L. |
author_role |
author |
author2 |
Karling, Maicon J. C. Lopes, Silvia Regina Feltes, Guilherme L. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Fractionally Integrated Moving Average processes, long-range dependence quadratic Ornstein-Uhlenbeck type processes |
topic |
Fractionally Integrated Moving Average processes, long-range dependence quadratic Ornstein-Uhlenbeck type processes |
description |
Stochastic processes with the long-range dependency (LRD) property are fundamental to modeling data that exhibit slow power decay of the covariance function. Such behavior often appears in the analysis of financial data, telecommunications, and various natural phenomena. Thus, introducing new stochastic models and statistical methods that take the LRD into account is of great interest. Based on previous work, we introduce a new stochastic process called quadratic fractionally integrated moving average, that arises from the Quadratic Ornstein-Uhlenbeck Type (QOUT) process, proposed in the literature. We consider Lévy noises of finite second-order moments and use a construction based on a moving average stochastic process whose kernel is that of a QOUT process. Then, using Riemann-Liouville fractional integrals, we propose a fractionally integrated moving average process, for which we highlight some results, including the LRD. We also propose the estimation of the parameters for this process for the case of fractional Brownian noise, showing its efficiency through a Monte Carlo simulation. By an application based on Brazil’s stock market prices, we illustrate how this process can be used in practice with the Sao Paulo’s Stock Exchange Index data set, also known as the BOVESPA Index. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981/6015 |
dc.rights.none.fl_str_mv |
Derechos de autor 2024 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2024 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 11 No. 01 (2024): January - July; 1 - 19 Selecciones Matemáticas; Vol. 11 Núm. 01 (2024): Enero - Julio; 1 - 19 Selecciones Matemáticas; v. 11 n. 01 (2024): Janeiro - Julho; 1 - 19 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845253427603439616 |
score |
13.0672035 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).