Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence

Descripción del Articulo

Stochastic processes with the long-range dependency (LRD) property are fundamental to modeling data that exhibit slow power decay of the covariance function. Such  behavior often appears in the analysis of financial data, telecommunications, and various natural phenomena. Thus, introducing new stoch...

Descripción completa

Detalles Bibliográficos
Autores: de Medeiros, Jonas F., Karling, Maicon J., C. Lopes, Silvia Regina, Feltes, Guilherme L.
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5981
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981
Nivel de acceso:acceso abierto
Materia:Fractionally Integrated Moving Average processes,
long-range dependence
quadratic Ornstein-Uhlenbeck type processes
id REVUNITRU_74859f72eb38c73483af1f8ed024c988
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5981
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependencede Medeiros, Jonas F.Karling, Maicon J.C. Lopes, Silvia ReginaFeltes, Guilherme L.Fractionally Integrated Moving Average processes,long-range dependencequadratic Ornstein-Uhlenbeck type processesStochastic processes with the long-range dependency (LRD) property are fundamental to modeling data that exhibit slow power decay of the covariance function. Such  behavior often appears in the analysis of financial data, telecommunications, and various natural phenomena. Thus, introducing new stochastic models and statistical methods that take the LRD into account is of great interest. Based on previous work, we introduce a  new stochastic process called quadratic fractionally integrated moving average, that arises from the Quadratic Ornstein-Uhlenbeck Type (QOUT) process, proposed in the literature. We consider Lévy noises of finite second-order moments and use a construction based on a moving average stochastic process whose kernel is that of a QOUT process. Then, using Riemann-Liouville fractional integrals, we propose a fractionally integrated moving average process, for which we highlight some results, including the LRD. We also propose the estimation of the parameters for this process for the case of fractional Brownian  noise, showing its efficiency through a Monte Carlo simulation. By an application based on Brazil’s stock market prices, we illustrate how this process can be used in practice with the Sao Paulo’s Stock Exchange Index data set, also known as the BOVESPA Index.National University of Trujillo - Academic Department of Mathematics2024-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981Selecciones Matemáticas; Vol. 11 No. 01 (2024): January - July; 1 - 19Selecciones Matemáticas; Vol. 11 Núm. 01 (2024): Enero - Julio; 1 - 19Selecciones Matemáticas; v. 11 n. 01 (2024): Janeiro - Julho; 1 - 192411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981/6015Derechos de autor 2024 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/59812024-07-29T16:50:33Z
dc.title.none.fl_str_mv Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
title Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
spellingShingle Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
de Medeiros, Jonas F.
Fractionally Integrated Moving Average processes,
long-range dependence
quadratic Ornstein-Uhlenbeck type processes
title_short Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
title_full Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
title_fullStr Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
title_full_unstemmed Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
title_sort Quadratic Fractionally Integrated Moving Average Processes with Long-Range Dependence
dc.creator.none.fl_str_mv de Medeiros, Jonas F.
Karling, Maicon J.
C. Lopes, Silvia Regina
Feltes, Guilherme L.
author de Medeiros, Jonas F.
author_facet de Medeiros, Jonas F.
Karling, Maicon J.
C. Lopes, Silvia Regina
Feltes, Guilherme L.
author_role author
author2 Karling, Maicon J.
C. Lopes, Silvia Regina
Feltes, Guilherme L.
author2_role author
author
author
dc.subject.none.fl_str_mv Fractionally Integrated Moving Average processes,
long-range dependence
quadratic Ornstein-Uhlenbeck type processes
topic Fractionally Integrated Moving Average processes,
long-range dependence
quadratic Ornstein-Uhlenbeck type processes
description Stochastic processes with the long-range dependency (LRD) property are fundamental to modeling data that exhibit slow power decay of the covariance function. Such  behavior often appears in the analysis of financial data, telecommunications, and various natural phenomena. Thus, introducing new stochastic models and statistical methods that take the LRD into account is of great interest. Based on previous work, we introduce a  new stochastic process called quadratic fractionally integrated moving average, that arises from the Quadratic Ornstein-Uhlenbeck Type (QOUT) process, proposed in the literature. We consider Lévy noises of finite second-order moments and use a construction based on a moving average stochastic process whose kernel is that of a QOUT process. Then, using Riemann-Liouville fractional integrals, we propose a fractionally integrated moving average process, for which we highlight some results, including the LRD. We also propose the estimation of the parameters for this process for the case of fractional Brownian  noise, showing its efficiency through a Monte Carlo simulation. By an application based on Brazil’s stock market prices, we illustrate how this process can be used in practice with the Sao Paulo’s Stock Exchange Index data set, also known as the BOVESPA Index.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5981/6015
dc.rights.none.fl_str_mv Derechos de autor 2024 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 11 No. 01 (2024): January - July; 1 - 19
Selecciones Matemáticas; Vol. 11 Núm. 01 (2024): Enero - Julio; 1 - 19
Selecciones Matemáticas; v. 11 n. 01 (2024): Janeiro - Julho; 1 - 19
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845253427603439616
score 13.0672035
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).