Uniquely List Colorability of Complete Split Graphs

Descripción del Articulo

The join of null graph Om and complete graph Kn, denoted by S(m; n), is called a complete split graph. In this paper, we characterize unique list colorability of the graph G = S(m; n). We shall prove that G is uniquely 3-list colorable graph if and only if m>=4, n>=4 and m + n...

Descripción completa

Detalles Bibliográficos
Autor: Xuan Hung, Le
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3709
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3709
Nivel de acceso:acceso abierto
Materia:Chromatic number
list-chromatic number
uniquely list colorable graph
complete split graph
id REVUNITRU_41369f37455cc3929abee6776cb3c983
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/3709
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Uniquely List Colorability of Complete Split GraphsUniquely List Colorability of Complete Split GraphsXuan Hung, Le Chromatic numberlist-chromatic numberuniquely list colorable graphcomplete split graphChromatic numberlist-chromatic numberuniquely list colorable graphcomplete split graphThe join of null graph Om and complete graph Kn, denoted by S(m; n), is called a complete split graph. In this paper, we characterize unique list colorability of the graph G = S(m; n). We shall prove that G is uniquely 3-list colorable graph if and only if m>=4, n>=4 and m + n>=10, m(G)>=4 for every 1<=m<=5 and n>=6.The join of null graph Om and complete graph Kn, denoted by S(m; n), is called a complete split graph. In this paper, we characterize unique list colorability of the graph G = S(m; n). We shall prove that G is uniquely 3-list colorable graph if and only if m>=4, n>=4 and m + n>=10, m(G)>=4 for every 1<=m<=5 and n>=6.National University of Trujillo - Academic Department of Mathematics2021-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/3709Selecciones Matemáticas; Vol. 8 No. 01 (2021): January-July; 120 - 124Selecciones Matemáticas; Vol. 8 Núm. 01 (2021): Enero-Julio; 120 - 124Selecciones Matemáticas; v. 8 n. 01 (2021): Janeiro-julho; 120 - 1242411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/3709/4377Derechos de autor 2021 Le Xuan Hunghttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/37092021-07-29T15:56:48Z
dc.title.none.fl_str_mv Uniquely List Colorability of Complete Split Graphs
Uniquely List Colorability of Complete Split Graphs
title Uniquely List Colorability of Complete Split Graphs
spellingShingle Uniquely List Colorability of Complete Split Graphs
Xuan Hung, Le
Chromatic number
list-chromatic number
uniquely list colorable graph
complete split graph
Chromatic number
list-chromatic number
uniquely list colorable graph
complete split graph
title_short Uniquely List Colorability of Complete Split Graphs
title_full Uniquely List Colorability of Complete Split Graphs
title_fullStr Uniquely List Colorability of Complete Split Graphs
title_full_unstemmed Uniquely List Colorability of Complete Split Graphs
title_sort Uniquely List Colorability of Complete Split Graphs
dc.creator.none.fl_str_mv Xuan Hung, Le
author Xuan Hung, Le
author_facet Xuan Hung, Le
author_role author
dc.subject.none.fl_str_mv Chromatic number
list-chromatic number
uniquely list colorable graph
complete split graph
Chromatic number
list-chromatic number
uniquely list colorable graph
complete split graph
topic Chromatic number
list-chromatic number
uniquely list colorable graph
complete split graph
Chromatic number
list-chromatic number
uniquely list colorable graph
complete split graph
description The join of null graph Om and complete graph Kn, denoted by S(m; n), is called a complete split graph. In this paper, we characterize unique list colorability of the graph G = S(m; n). We shall prove that G is uniquely 3-list colorable graph if and only if m>=4, n>=4 and m + n>=10, m(G)>=4 for every 1<=m<=5 and n>=6.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3709
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3709
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/3709/4377
dc.rights.none.fl_str_mv Derechos de autor 2021 Le Xuan Hung
https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Le Xuan Hung
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 8 No. 01 (2021): January-July; 120 - 124
Selecciones Matemáticas; Vol. 8 Núm. 01 (2021): Enero-Julio; 120 - 124
Selecciones Matemáticas; v. 8 n. 01 (2021): Janeiro-julho; 120 - 124
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847155314462294016
score 13.098175
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).