Some Variants of Wayment's Mean Value Theorem for Integrals

Descripción del Articulo

This note deals with some variants of Wayment’s Mean Value Theorem for integrals. Our approach is rather elementary and does not use advanced techniques from analysis. The simple auxiliary functions were used to prove the results.
Detalles Bibliográficos
Autor: Lozada-Cruz, German
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/6619
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6619
Nivel de acceso:acceso abierto
Materia:Flett's theorem
Myers' theorem
Wayment's theorem
id REVUNITRU_3f1ab400f7276fa88813ad81571f3b80
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/6619
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Some Variants of Wayment's Mean Value Theorem for IntegralsSome Variants of Wayment's Mean Value Theorem for IntegralsSome Variants of Wayment's Mean Value Theorem for IntegralsLozada-Cruz, GermanFlett's theoremMyers' theoremWayment's theoremFlett's theoremMyers' theoremWayment's theoremFlett's theoremMyers' theoremWayment's theoremThis note deals with some variants of Wayment’s Mean Value Theorem for integrals. Our approach is rather elementary and does not use advanced techniques from analysis. The simple auxiliary functions were used to prove the results.This note deals with some variants of Wayment’s Mean Value Theorem for integrals. Our approach is rather elementary and does not use advanced techniques from analysis. The simple auxiliary functions were used to prove the results.This note deals with some variants of Wayment’s Mean Value Theorem for integrals. Our approach is rather elementary and does not use advanced techniques from analysis. The simple auxiliary functions were used to prove the results.National University of Trujillo - Academic Department of Mathematics2025-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6619Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 62 - 66Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 62 - 66Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 62 - 662411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/6619/6855https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/66192025-07-26T15:43:48Z
dc.title.none.fl_str_mv Some Variants of Wayment's Mean Value Theorem for Integrals
Some Variants of Wayment's Mean Value Theorem for Integrals
Some Variants of Wayment's Mean Value Theorem for Integrals
title Some Variants of Wayment's Mean Value Theorem for Integrals
spellingShingle Some Variants of Wayment's Mean Value Theorem for Integrals
Lozada-Cruz, German
Flett's theorem
Myers' theorem
Wayment's theorem
Flett's theorem
Myers' theorem
Wayment's theorem
Flett's theorem
Myers' theorem
Wayment's theorem
title_short Some Variants of Wayment's Mean Value Theorem for Integrals
title_full Some Variants of Wayment's Mean Value Theorem for Integrals
title_fullStr Some Variants of Wayment's Mean Value Theorem for Integrals
title_full_unstemmed Some Variants of Wayment's Mean Value Theorem for Integrals
title_sort Some Variants of Wayment's Mean Value Theorem for Integrals
dc.creator.none.fl_str_mv Lozada-Cruz, German
author Lozada-Cruz, German
author_facet Lozada-Cruz, German
author_role author
dc.subject.none.fl_str_mv Flett's theorem
Myers' theorem
Wayment's theorem
Flett's theorem
Myers' theorem
Wayment's theorem
Flett's theorem
Myers' theorem
Wayment's theorem
topic Flett's theorem
Myers' theorem
Wayment's theorem
Flett's theorem
Myers' theorem
Wayment's theorem
Flett's theorem
Myers' theorem
Wayment's theorem
description This note deals with some variants of Wayment’s Mean Value Theorem for integrals. Our approach is rather elementary and does not use advanced techniques from analysis. The simple auxiliary functions were used to prove the results.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6619
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6619
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/6619/6855
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 01 (2025): January - July; 62 - 66
Selecciones Matemáticas; Vol. 12 Núm. 01 (2025): Enero - Julio; 62 - 66
Selecciones Matemáticas; v. 12 n. 01 (2025): Janeiro - Julho; 62 - 66
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845886948360585216
score 13.377112
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).