Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm
Descripción del Articulo
The key factor in durian fruit trading is ripeness. Several studies have been conducted on non-destructive durian maturity classification using near-infrared (NIR) spectroscopy. However, most of these studies manually determined the most accurate measurement position, which was the durian's mai...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/6362 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362 |
Nivel de acceso: | acceso abierto |
Materia: | Durian fertile locule’s center Unet Att-Unet Att-ResUnet Test time augmentation |
id |
REVUNITRU_1df569783ac3aca223500486497cb78f |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/6362 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm Luu, Thanh TungCao, Nhat Quang Durianfertile locule’s centerUnetAtt-UnetAtt-ResUnetTest time augmentationThe key factor in durian fruit trading is ripeness. Several studies have been conducted on non-destructive durian maturity classification using near-infrared (NIR) spectroscopy. However, most of these studies manually determined the most accurate measurement position, which was the durian's main fertile lobe center. This research aims to automate the stage of detecting this position of the durian by using UNet segmentation method, which leverages differences in rind texture between the center of the main fertile lobe and other areas (lobe grooves and stems), prior to conducting NIR measurements. The rough and non-uniform surface of the durian rind presents a significant challenge for segmentation. However, the large size of the durian spines in the main fertile lobe serves as an identification characteristic for the segmentation model. This study uses the Ri-6 durian in Vietnam as the samples for the experiment. The model was developed using three architectures: Unet, Attention-Unet and Attention-Residual Unet. According to the analysis results on test set, Unet, Attention-Unet and Attention-Residual Unet algorithms achieved %accuracy of 78.22%, 81.34%, 82.89% and %intersection over union of 79.49%, 80.47%, 80.72%, respectively. After that, the model was further enhanced using the test time augmentation algorithm, improving the %accuracy to 85.24%, 85.68%, 86.85% and %IoU to 81.65%, 82.03% and 83.12%. Among the three architectures, the Attention-Residual-Unet model demonstrated the highest efficiency in detecting the center of the durian’s main fertile lobe for non-destructive durian maturity classification. This method can be applied to the development of an automatic durian’s maturity classification machine, which would save time and improve economic efficiency.Universidad Nacional de Trujillo2025-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362Scientia Agropecuaria; Vol. 16 Núm. 4 (2025): Octubre-Diciembre; 499-511Scientia Agropecuaria; Vol. 16 No. 4 (2025): Octubre-Diciembre; 499-5112306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUengspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362/6893https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362/6920Derechos de autor 2025 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/63622025-08-08T18:31:48Z |
dc.title.none.fl_str_mv |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm |
title |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm |
spellingShingle |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm Luu, Thanh Tung Durian fertile locule’s center Unet Att-Unet Att-ResUnet Test time augmentation |
title_short |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm |
title_full |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm |
title_fullStr |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm |
title_full_unstemmed |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm |
title_sort |
Applying artificial intelligence in durian fertile lobe detection: Attention-Residual Unet and Test Time Augmentation algorithm |
dc.creator.none.fl_str_mv |
Luu, Thanh Tung Cao, Nhat Quang |
author |
Luu, Thanh Tung |
author_facet |
Luu, Thanh Tung Cao, Nhat Quang |
author_role |
author |
author2 |
Cao, Nhat Quang |
author2_role |
author |
dc.subject.none.fl_str_mv |
Durian fertile locule’s center Unet Att-Unet Att-ResUnet Test time augmentation |
topic |
Durian fertile locule’s center Unet Att-Unet Att-ResUnet Test time augmentation |
description |
The key factor in durian fruit trading is ripeness. Several studies have been conducted on non-destructive durian maturity classification using near-infrared (NIR) spectroscopy. However, most of these studies manually determined the most accurate measurement position, which was the durian's main fertile lobe center. This research aims to automate the stage of detecting this position of the durian by using UNet segmentation method, which leverages differences in rind texture between the center of the main fertile lobe and other areas (lobe grooves and stems), prior to conducting NIR measurements. The rough and non-uniform surface of the durian rind presents a significant challenge for segmentation. However, the large size of the durian spines in the main fertile lobe serves as an identification characteristic for the segmentation model. This study uses the Ri-6 durian in Vietnam as the samples for the experiment. The model was developed using three architectures: Unet, Attention-Unet and Attention-Residual Unet. According to the analysis results on test set, Unet, Attention-Unet and Attention-Residual Unet algorithms achieved %accuracy of 78.22%, 81.34%, 82.89% and %intersection over union of 79.49%, 80.47%, 80.72%, respectively. After that, the model was further enhanced using the test time augmentation algorithm, improving the %accuracy to 85.24%, 85.68%, 86.85% and %IoU to 81.65%, 82.03% and 83.12%. Among the three architectures, the Attention-Residual-Unet model demonstrated the highest efficiency in detecting the center of the durian’s main fertile lobe for non-destructive durian maturity classification. This method can be applied to the development of an automatic durian’s maturity classification machine, which would save time and improve economic efficiency. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-08-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362 |
dc.language.none.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362/6893 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/6362/6920 |
dc.rights.none.fl_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2025 Scientia Agropecuaria https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 16 Núm. 4 (2025): Octubre-Diciembre; 499-511 Scientia Agropecuaria; Vol. 16 No. 4 (2025): Octubre-Diciembre; 499-511 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845886924528549888 |
score |
13.361153 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).