Influence of high Andean grasslands on landslide reduction in Peru

Descripción del Articulo

Agricultural and urban expansion has caused considerable degradation of ecosystems. In the case of Peruvian high Andean grasslands, it was reported that between 2000 and 2009, this ecosystem was reduced by 7%. The limited or no protection they receive is partly due to the fact that the benefits of e...

Descripción completa

Detalles Bibliográficos
Autores: Cerna-Cueva, Albert Franco, Uriarte-Barraza, Katherin Lourdes, Lobatón-Tarazona, Grecia Isabel, Saenz-Corrales, Wensty, Aguirre-Escalante, Casiano, Coaguila-Rodriguez, Peter, Reategui-Inga, Manuel
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5415
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415
Nivel de acceso:acceso abierto
Materia:High Andean grasslands
landslide
machine learning
ecosystem services
climate change
id REVUNITRU_0255a38bde00ce3d524863c5c0c6320b
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5415
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Influence of high Andean grasslands on landslide reduction in PeruCerna-Cueva, Albert FrancoUriarte-Barraza, Katherin LourdesLobatón-Tarazona, Grecia IsabelSaenz-Corrales, WenstyAguirre-Escalante, CasianoCoaguila-Rodriguez, PeterReategui-Inga, ManuelHigh Andean grasslandslandslidemachine learningecosystem servicesclimate changeAgricultural and urban expansion has caused considerable degradation of ecosystems. In the case of Peruvian high Andean grasslands, it was reported that between 2000 and 2009, this ecosystem was reduced by 7%. The limited or no protection they receive is partly due to the fact that the benefits of ecosystem services are not widely known. This research aims to establish and predict the influence of high Andean grasslands on the annual occurrence of landslides. To do so, we identified occurrences of landslides, falls, huaycos, avalanches, and alluviums in high Andean grasslands. We also examined urban areas and agricultural zones of Peru for the period from 2003 to 2016. Subsequently, we extracted data on precipitation, temperature, slopes, soil types, and geographical variables. This data was used to train a machine learning model. The results show that 96% of landslides occurred in human-intervened areas, and only 4% in high Andean grasslands. Precipitation and slope thresholds for landslide occurrence are higher in high Andean grasslands compared to agricultural and urban areas. The best-performing machine learning models were linear regression, Gaussian processes, random forest, and support vector machine. They had coefficients of determination of R² = 0.80, 0.80, 0.66, and 0.64, respectively. Predictions show that if agricultural or urban areas are established in wet or dry puna grasslands, the average number of occurrences multiplies. The multiplier factors are 2.1 and 7.08, the number of deaths by 2.8 and 10.49, the number of houses destroyed by 2.4 and 7.51, and the number of roads destroyed by 2.2 and 7.37, respectively. The study demonstrates that conserving high Andean grasslands significantly reduces landslides compared to urban or agricultural areas.Universidad Nacional de Trujillo2024-06-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415Scientia Agropecuaria; Vol. 15 Núm. 3 (2024): julio-septiembre; 333-348Scientia Agropecuaria; Vol. 15 No. 3 (2024): julio-septiembre; 333-3482306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415/5987https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415/6563Derechos de autor 2024 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/54152024-06-08T03:27:20Z
dc.title.none.fl_str_mv Influence of high Andean grasslands on landslide reduction in Peru
title Influence of high Andean grasslands on landslide reduction in Peru
spellingShingle Influence of high Andean grasslands on landslide reduction in Peru
Cerna-Cueva, Albert Franco
High Andean grasslands
landslide
machine learning
ecosystem services
climate change
title_short Influence of high Andean grasslands on landslide reduction in Peru
title_full Influence of high Andean grasslands on landslide reduction in Peru
title_fullStr Influence of high Andean grasslands on landslide reduction in Peru
title_full_unstemmed Influence of high Andean grasslands on landslide reduction in Peru
title_sort Influence of high Andean grasslands on landslide reduction in Peru
dc.creator.none.fl_str_mv Cerna-Cueva, Albert Franco
Uriarte-Barraza, Katherin Lourdes
Lobatón-Tarazona, Grecia Isabel
Saenz-Corrales, Wensty
Aguirre-Escalante, Casiano
Coaguila-Rodriguez, Peter
Reategui-Inga, Manuel
author Cerna-Cueva, Albert Franco
author_facet Cerna-Cueva, Albert Franco
Uriarte-Barraza, Katherin Lourdes
Lobatón-Tarazona, Grecia Isabel
Saenz-Corrales, Wensty
Aguirre-Escalante, Casiano
Coaguila-Rodriguez, Peter
Reategui-Inga, Manuel
author_role author
author2 Uriarte-Barraza, Katherin Lourdes
Lobatón-Tarazona, Grecia Isabel
Saenz-Corrales, Wensty
Aguirre-Escalante, Casiano
Coaguila-Rodriguez, Peter
Reategui-Inga, Manuel
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv High Andean grasslands
landslide
machine learning
ecosystem services
climate change
topic High Andean grasslands
landslide
machine learning
ecosystem services
climate change
description Agricultural and urban expansion has caused considerable degradation of ecosystems. In the case of Peruvian high Andean grasslands, it was reported that between 2000 and 2009, this ecosystem was reduced by 7%. The limited or no protection they receive is partly due to the fact that the benefits of ecosystem services are not widely known. This research aims to establish and predict the influence of high Andean grasslands on the annual occurrence of landslides. To do so, we identified occurrences of landslides, falls, huaycos, avalanches, and alluviums in high Andean grasslands. We also examined urban areas and agricultural zones of Peru for the period from 2003 to 2016. Subsequently, we extracted data on precipitation, temperature, slopes, soil types, and geographical variables. This data was used to train a machine learning model. The results show that 96% of landslides occurred in human-intervened areas, and only 4% in high Andean grasslands. Precipitation and slope thresholds for landslide occurrence are higher in high Andean grasslands compared to agricultural and urban areas. The best-performing machine learning models were linear regression, Gaussian processes, random forest, and support vector machine. They had coefficients of determination of R² = 0.80, 0.80, 0.66, and 0.64, respectively. Predictions show that if agricultural or urban areas are established in wet or dry puna grasslands, the average number of occurrences multiplies. The multiplier factors are 2.1 and 7.08, the number of deaths by 2.8 and 10.49, the number of houses destroyed by 2.4 and 7.51, and the number of roads destroyed by 2.2 and 7.37, respectively. The study demonstrates that conserving high Andean grasslands significantly reduces landslides compared to urban or agricultural areas.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415/5987
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/5415/6563
dc.rights.none.fl_str_mv Derechos de autor 2024 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 15 Núm. 3 (2024): julio-septiembre; 333-348
Scientia Agropecuaria; Vol. 15 No. 3 (2024): julio-septiembre; 333-348
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843984359244169216
score 13.023852
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).