PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
Descripción del Articulo
This research explains the applications of the algorithm that was designed to provide statistical support for medical doctors. The support that was achieved from this research looks for an urgent interpretation of parameters such as the rate of infected people by COVID-19 and the rate of deceased pe...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Nacional Federico Villarreal |
Repositorio: | Revistas - Universidad Nacional Federico Villarreal |
Lenguaje: | español |
OAI Identifier: | oai:ojs2.revistas.unfv.edu.pe:article/878 |
Enlace del recurso: | https://revistas.unfv.edu.pe/rtb/article/view/878 |
Nivel de acceso: | acceso abierto |
Materia: | COVID-19 propagation statistical data Mathematical modeling Propagación de COVID-19 datos estadísticos modelamiento matemático |
id |
REVUNFV_076f70e60bfad6950186053a44f410d9 |
---|---|
oai_identifier_str |
oai:ojs2.revistas.unfv.edu.pe:article/878 |
network_acronym_str |
REVUNFV |
network_name_str |
Revistas - Universidad Nacional Federico Villarreal |
repository_id_str |
. |
spelling |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYSANÁLISIS PREDICTIVO DEL ALGORITMO PARA UNA PREVENCIÓN ÓPTIMA EN EL TIEMPO DE CORONAVIRUS (COVID-19) DURANTE LOS DÍAS DE CUARENTENACalderón Ch, J. AlanTafur Sotelo, JulioBarriga Gamarra, BenjaminGuevara Guevara, JulioLozano Jauregui, JohnLengua Arteaga, JuanSolano, GonzaloCOVID-19 propagationstatistical dataMathematical modelingPropagación de COVID-19datos estadísticosmodelamiento matemáticoThis research explains the applications of the algorithm that was designed to provide statistical support for medical doctors. The support that was achieved from this research looks for an urgent interpretation of parameters such as the rate of infected people by COVID-19 and the rate of deceased people because of this virus. Furthermore, this research achieves prediction rates that were provided by a mathematical model that observes and adapts real statistical data from other countries, where governments are trying to find solutions against of COVID-19 propagation. It means, in order to get accuracy in prediction results, it was necessary to analyse what was the statistical behaviour from China and other countries that returned to normal activities as it was before virus imposed to confine population inside homes. On the other hand, it is summarized the virus problematic growth and some suggestions, how to avoid deep complications in health and economy of people (for instance, quarantine days as the main response to attenuate advance of this virus).En esta investigación se explica las aplicaciones del algoritmo que fue propuesto para proporcionar apoyo estadístico para los médicos. El apoyo que se realizó en esta investigación busca una urgente interpretación de parámetros como la tasa de personas infectadas por COVID-19 y la tasa de personas fallecidas a causa de este virus. Además, esta investigación logra predecir las tasas que fueron proporcionadas por un modelo matemático que observa y adapta datos estadísticos reales de otros países donde están tratando de encontrar soluciones contra la propagación del COVID – 19. Esto implica que, con el fin de obtener precisión en los resultados de la predicción, fue necesario analizar cuál fue el comportamiento estadístico de China y otros países que volvieron a la normalidad de sus actividades, tal como era antes de que el virus impusiera a la población a permanecer en sus hogares. Por otro lado, se resume el crecimiento problemático del virus y algunas sugerencias de cómo evitar complicaciones profundas en la salud y la economía de las personas (por ejemplo, los días de cuarentena, como principal respuesta para atenuar el avance de este virus).Universidad Nacional Federico Villarreal. Facultad de Ciencias Naturales y Matemática. Escuela Profesional de Biología2021-01-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/epub+ziphttps://revistas.unfv.edu.pe/rtb/article/view/878The Biologist; Vol. 19 No. 1 (2021): The Biologist (Lima); 29-39The Biologist; Vol. 19 Núm. 1 (2021): The Biologist (Lima); 29-391994-90731816-0719reponame:Revistas - Universidad Nacional Federico Villarrealinstname:Universidad Nacional Federico Villarrealinstacron:UNFVspahttps://revistas.unfv.edu.pe/rtb/article/view/878/777https://revistas.unfv.edu.pe/rtb/article/view/878/1619https://revistas.unfv.edu.pe/rtb/article/view/878/1620Derechos de autor 2021 The Biologisthttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessoai:ojs2.revistas.unfv.edu.pe:article/8782022-01-11T23:03:11Z |
dc.title.none.fl_str_mv |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS ANÁLISIS PREDICTIVO DEL ALGORITMO PARA UNA PREVENCIÓN ÓPTIMA EN EL TIEMPO DE CORONAVIRUS (COVID-19) DURANTE LOS DÍAS DE CUARENTENA |
title |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS |
spellingShingle |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS Calderón Ch, J. Alan COVID-19 propagation statistical data Mathematical modeling Propagación de COVID-19 datos estadísticos modelamiento matemático |
title_short |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS |
title_full |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS |
title_fullStr |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS |
title_full_unstemmed |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS |
title_sort |
PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS |
dc.creator.none.fl_str_mv |
Calderón Ch, J. Alan Tafur Sotelo, Julio Barriga Gamarra, Benjamin Guevara Guevara, Julio Lozano Jauregui, John Lengua Arteaga, Juan Solano, Gonzalo |
author |
Calderón Ch, J. Alan |
author_facet |
Calderón Ch, J. Alan Tafur Sotelo, Julio Barriga Gamarra, Benjamin Guevara Guevara, Julio Lozano Jauregui, John Lengua Arteaga, Juan Solano, Gonzalo |
author_role |
author |
author2 |
Tafur Sotelo, Julio Barriga Gamarra, Benjamin Guevara Guevara, Julio Lozano Jauregui, John Lengua Arteaga, Juan Solano, Gonzalo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
COVID-19 propagation statistical data Mathematical modeling Propagación de COVID-19 datos estadísticos modelamiento matemático |
topic |
COVID-19 propagation statistical data Mathematical modeling Propagación de COVID-19 datos estadísticos modelamiento matemático |
description |
This research explains the applications of the algorithm that was designed to provide statistical support for medical doctors. The support that was achieved from this research looks for an urgent interpretation of parameters such as the rate of infected people by COVID-19 and the rate of deceased people because of this virus. Furthermore, this research achieves prediction rates that were provided by a mathematical model that observes and adapts real statistical data from other countries, where governments are trying to find solutions against of COVID-19 propagation. It means, in order to get accuracy in prediction results, it was necessary to analyse what was the statistical behaviour from China and other countries that returned to normal activities as it was before virus imposed to confine population inside homes. On the other hand, it is summarized the virus problematic growth and some suggestions, how to avoid deep complications in health and economy of people (for instance, quarantine days as the main response to attenuate advance of this virus). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unfv.edu.pe/rtb/article/view/878 |
url |
https://revistas.unfv.edu.pe/rtb/article/view/878 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unfv.edu.pe/rtb/article/view/878/777 https://revistas.unfv.edu.pe/rtb/article/view/878/1619 https://revistas.unfv.edu.pe/rtb/article/view/878/1620 |
dc.rights.none.fl_str_mv |
Derechos de autor 2021 The Biologist https://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2021 The Biologist https://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html application/epub+zip |
dc.publisher.none.fl_str_mv |
Universidad Nacional Federico Villarreal. Facultad de Ciencias Naturales y Matemática. Escuela Profesional de Biología |
publisher.none.fl_str_mv |
Universidad Nacional Federico Villarreal. Facultad de Ciencias Naturales y Matemática. Escuela Profesional de Biología |
dc.source.none.fl_str_mv |
The Biologist; Vol. 19 No. 1 (2021): The Biologist (Lima); 29-39 The Biologist; Vol. 19 Núm. 1 (2021): The Biologist (Lima); 29-39 1994-9073 1816-0719 reponame:Revistas - Universidad Nacional Federico Villarreal instname:Universidad Nacional Federico Villarreal instacron:UNFV |
instname_str |
Universidad Nacional Federico Villarreal |
instacron_str |
UNFV |
institution |
UNFV |
reponame_str |
Revistas - Universidad Nacional Federico Villarreal |
collection |
Revistas - Universidad Nacional Federico Villarreal |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1789172151855611904 |
score |
13.765981 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).