PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS

Descripción del Articulo

This research explains the applications of the algorithm that was designed to provide statistical support for medical doctors. The support that was achieved from this research looks for an urgent interpretation of parameters such as the rate of infected people by COVID-19 and the rate of deceased pe...

Descripción completa

Detalles Bibliográficos
Autores: Calderón Ch, J. Alan, Tafur Sotelo, Julio, Barriga Gamarra, Benjamin, Guevara Guevara, Julio, Lozano Jauregui, John, Lengua Arteaga, Juan, Solano, Gonzalo
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Federico Villarreal
Repositorio:Revistas - Universidad Nacional Federico Villarreal
Lenguaje:español
OAI Identifier:oai:ojs2.revistas.unfv.edu.pe:article/878
Enlace del recurso:https://revistas.unfv.edu.pe/rtb/article/view/878
Nivel de acceso:acceso abierto
Materia:COVID-19 propagation
statistical data
Mathematical modeling
Propagación de COVID-19
datos estadísticos
modelamiento matemático
id REVUNFV_076f70e60bfad6950186053a44f410d9
oai_identifier_str oai:ojs2.revistas.unfv.edu.pe:article/878
network_acronym_str REVUNFV
network_name_str Revistas - Universidad Nacional Federico Villarreal
repository_id_str .
spelling PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYSANÁLISIS PREDICTIVO DEL ALGORITMO PARA UNA PREVENCIÓN ÓPTIMA EN EL TIEMPO DE CORONAVIRUS (COVID-19) DURANTE LOS DÍAS DE CUARENTENACalderón Ch, J. AlanTafur Sotelo, JulioBarriga Gamarra, BenjaminGuevara Guevara, JulioLozano Jauregui, JohnLengua Arteaga, JuanSolano, GonzaloCOVID-19 propagationstatistical dataMathematical modelingPropagación de COVID-19datos estadísticosmodelamiento matemáticoThis research explains the applications of the algorithm that was designed to provide statistical support for medical doctors. The support that was achieved from this research looks for an urgent interpretation of parameters such as the rate of infected people by COVID-19 and the rate of deceased people because of this virus. Furthermore, this research achieves prediction rates that were provided by a mathematical model that observes and adapts real statistical data from other countries, where governments are trying to find solutions against of COVID-19 propagation. It means, in order to get accuracy in prediction results, it was necessary to analyse what was the statistical behaviour from China and other countries that returned to normal activities as it was before virus imposed to confine population inside homes. On the other hand, it is summarized the virus problematic growth and some suggestions, how to avoid deep complications in health and economy of people (for instance, quarantine days as the main response to attenuate advance of this virus).En esta investigación se explica las aplicaciones del algoritmo que fue propuesto para proporcionar apoyo estadístico para los médicos. El apoyo que se realizó en esta investigación busca una urgente interpretación de parámetros como la tasa de personas infectadas por COVID-19 y la tasa de personas fallecidas a causa de este virus. Además, esta investigación logra predecir las tasas que fueron proporcionadas por un modelo matemático que observa y adapta datos estadísticos reales de otros países donde están tratando de encontrar soluciones contra la propagación del COVID – 19. Esto implica que, con el fin de obtener precisión en los resultados de la predicción, fue necesario analizar cuál fue el comportamiento estadístico de China y otros países que volvieron a la normalidad de sus actividades, tal como era antes de que el virus impusiera a la población a permanecer en sus hogares. Por otro lado, se resume el crecimiento problemático del virus y algunas sugerencias de cómo evitar complicaciones profundas en la salud y la economía de las personas (por ejemplo, los días de cuarentena, como principal respuesta para atenuar el avance de este virus).Universidad Nacional Federico Villarreal. Facultad de Ciencias Naturales y Matemática. Escuela Profesional de Biología2021-01-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/epub+ziphttps://revistas.unfv.edu.pe/rtb/article/view/878The Biologist; Vol. 19 No. 1 (2021): The Biologist (Lima); 29-39The Biologist; Vol. 19 Núm. 1 (2021): The Biologist (Lima); 29-391994-90731816-0719reponame:Revistas - Universidad Nacional Federico Villarrealinstname:Universidad Nacional Federico Villarrealinstacron:UNFVspahttps://revistas.unfv.edu.pe/rtb/article/view/878/777https://revistas.unfv.edu.pe/rtb/article/view/878/1619https://revistas.unfv.edu.pe/rtb/article/view/878/1620Derechos de autor 2021 The Biologisthttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessoai:ojs2.revistas.unfv.edu.pe:article/8782022-01-11T23:03:11Z
dc.title.none.fl_str_mv PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
ANÁLISIS PREDICTIVO DEL ALGORITMO PARA UNA PREVENCIÓN ÓPTIMA EN EL TIEMPO DE CORONAVIRUS (COVID-19) DURANTE LOS DÍAS DE CUARENTENA
title PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
spellingShingle PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
Calderón Ch, J. Alan
COVID-19 propagation
statistical data
Mathematical modeling
Propagación de COVID-19
datos estadísticos
modelamiento matemático
title_short PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
title_full PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
title_fullStr PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
title_full_unstemmed PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
title_sort PREDICTIVE ALGORITHM ANALYSIS FOR OPTIMAL PREVENTIONS IN TIME OF CORONAVIRUS (COVID-19) DURING QUARANTINE DAYS
dc.creator.none.fl_str_mv Calderón Ch, J. Alan
Tafur Sotelo, Julio
Barriga Gamarra, Benjamin
Guevara Guevara, Julio
Lozano Jauregui, John
Lengua Arteaga, Juan
Solano, Gonzalo
author Calderón Ch, J. Alan
author_facet Calderón Ch, J. Alan
Tafur Sotelo, Julio
Barriga Gamarra, Benjamin
Guevara Guevara, Julio
Lozano Jauregui, John
Lengua Arteaga, Juan
Solano, Gonzalo
author_role author
author2 Tafur Sotelo, Julio
Barriga Gamarra, Benjamin
Guevara Guevara, Julio
Lozano Jauregui, John
Lengua Arteaga, Juan
Solano, Gonzalo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv COVID-19 propagation
statistical data
Mathematical modeling
Propagación de COVID-19
datos estadísticos
modelamiento matemático
topic COVID-19 propagation
statistical data
Mathematical modeling
Propagación de COVID-19
datos estadísticos
modelamiento matemático
description This research explains the applications of the algorithm that was designed to provide statistical support for medical doctors. The support that was achieved from this research looks for an urgent interpretation of parameters such as the rate of infected people by COVID-19 and the rate of deceased people because of this virus. Furthermore, this research achieves prediction rates that were provided by a mathematical model that observes and adapts real statistical data from other countries, where governments are trying to find solutions against of COVID-19 propagation. It means, in order to get accuracy in prediction results, it was necessary to analyse what was the statistical behaviour from China and other countries that returned to normal activities as it was before virus imposed to confine population inside homes. On the other hand, it is summarized the virus problematic growth and some suggestions, how to avoid deep complications in health and economy of people (for instance, quarantine days as the main response to attenuate advance of this virus).
publishDate 2021
dc.date.none.fl_str_mv 2021-01-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unfv.edu.pe/rtb/article/view/878
url https://revistas.unfv.edu.pe/rtb/article/view/878
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unfv.edu.pe/rtb/article/view/878/777
https://revistas.unfv.edu.pe/rtb/article/view/878/1619
https://revistas.unfv.edu.pe/rtb/article/view/878/1620
dc.rights.none.fl_str_mv Derechos de autor 2021 The Biologist
https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 The Biologist
https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
application/epub+zip
dc.publisher.none.fl_str_mv Universidad Nacional Federico Villarreal. Facultad de Ciencias Naturales y Matemática. Escuela Profesional de Biología
publisher.none.fl_str_mv Universidad Nacional Federico Villarreal. Facultad de Ciencias Naturales y Matemática. Escuela Profesional de Biología
dc.source.none.fl_str_mv The Biologist; Vol. 19 No. 1 (2021): The Biologist (Lima); 29-39
The Biologist; Vol. 19 Núm. 1 (2021): The Biologist (Lima); 29-39
1994-9073
1816-0719
reponame:Revistas - Universidad Nacional Federico Villarreal
instname:Universidad Nacional Federico Villarreal
instacron:UNFV
instname_str Universidad Nacional Federico Villarreal
instacron_str UNFV
institution UNFV
reponame_str Revistas - Universidad Nacional Federico Villarreal
collection Revistas - Universidad Nacional Federico Villarreal
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1789172151855611904
score 13.765981
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).