Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).

Descripción del Articulo

In the present study, the control of the pyrolysis temperature was carried out in a gasification process of eucalyptus wood, its prediction is made based on the operating parameters of the reactor to ensure the obtaining of a synthesis gas with the required quality. The results obtained from the mat...

Descripción completa

Detalles Bibliográficos
Autores: Gutierrez Gualotuña, Eduardo Roberto, Solis Cornejo, Edison, Llamatumbi Pinán, German
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional Santiago Antúnez de Mayolo
Repositorio:Revistas - Universidad Nacional Santiago Antunez de Mayolo
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/802
Enlace del recurso:http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/802
Nivel de acceso:acceso abierto
Materia:gasificación; biomasa; predicción; temperatura de pirólisis; redes neuronales.
gasification; biomass; prediction; pyrolysis temperature; neural networks.
id REVUNASAM_7492c721d2f073784e60ea5222ffa68b
oai_identifier_str oai:ojs.pkp.sfu.ca:article/802
network_acronym_str REVUNASAM
network_name_str Revistas - Universidad Nacional Santiago Antunez de Mayolo
repository_id_str .
spelling Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).Determinación y Evaluación de la Temperatura de Pirolización para el Proceso de Cogeneración en Gasificación tipo Downdraft con el Uso de Redes Neuronales Artificiales (RNA).Gutierrez Gualotuña, Eduardo RobertoSolis Cornejo, EdisonLlamatumbi Pinán, Germangasificación; biomasa; predicción; temperatura de pirólisis; redes neuronales.gasification; biomass; prediction; pyrolysis temperature; neural networks.In the present study, the control of the pyrolysis temperature was carried out in a gasification process of eucalyptus wood, its prediction is made based on the operating parameters of the reactor to ensure the obtaining of a synthesis gas with the required quality. The results obtained from the mathematical modeling for the prediction of the pyrolysis temperature with the use of artificial intelligence techniques and the development of artificial neural networks are shown, with experimental data of the process. For this reason, an experimental statistical design of type 3n was implemented, with two additional replications, by means of which the training of an artificial neural network capable of predicting the pyrolysis temperature in a downdraft type gasifier with cogeneration was carried out. The prediction of the pyrolysis temperature has an error of 4.6 oC and an adjustment of 93.71%, adequate values ​​for this working parameter.En el presente estudio se realizó el control de la temperatura de pirolización en un proceso de gasificación de la madera de eucalipto, su predicción se realiza a parir de los parámetros de operación del reactor para asegurar la obtención de un gas de síntesis con la calidad requerida. Se muestran los resultados obtenidos del modelado matemático para la predicción de la temperatura de pirólisis con la utilización de técnicas de inteligencia artificial y el desarrollo de redes neuronales artificiales, con datos experimentales del proceso. Por ello se implementó un diseño estadístico experimental de tipo 3n, con dos réplicas adicionales, mediante el cual se realizaron los entrenamientos de una red neuronal artificial capaz de predecir la temperatura de pirólisis en un gasificador de tipo downdraft con cogeneración. La predicción de la temperatura de pirólisis tiene error de 4,6 oC y un ajuste del 93,71 %, valores adecuados sobre este parámetro de trabajo.Universidad Nacional Santiago Antúnez de Mayolo2021-12-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/80210.32911/as.2021.v14.n2.802Aporte Santiaguino; Vol. 14, Núm. 2 (2021): Julio-Diciembre; pág. 212-2262616-95412070-836Xreponame:Revistas - Universidad Nacional Santiago Antunez de Mayoloinstname:Universidad Nacional Santiago Antúnez de Mayoloinstacron:UNASAMspahttp://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/802/984http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/802/992info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/8022022-03-15T13:53:52Z
dc.title.none.fl_str_mv Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
Determinación y Evaluación de la Temperatura de Pirolización para el Proceso de Cogeneración en Gasificación tipo Downdraft con el Uso de Redes Neuronales Artificiales (RNA).
title Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
spellingShingle Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
Gutierrez Gualotuña, Eduardo Roberto
gasificación; biomasa; predicción; temperatura de pirólisis; redes neuronales.
gasification; biomass; prediction; pyrolysis temperature; neural networks.
title_short Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
title_full Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
title_fullStr Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
title_full_unstemmed Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
title_sort Determination and Evaluation of the Pyrolysis Temperature for the Cogeneration Process in Downdraft Gasification with the Use of Artificial Neural Networks (ANN).
dc.creator.none.fl_str_mv Gutierrez Gualotuña, Eduardo Roberto
Solis Cornejo, Edison
Llamatumbi Pinán, German
author Gutierrez Gualotuña, Eduardo Roberto
author_facet Gutierrez Gualotuña, Eduardo Roberto
Solis Cornejo, Edison
Llamatumbi Pinán, German
author_role author
author2 Solis Cornejo, Edison
Llamatumbi Pinán, German
author2_role author
author
dc.subject.none.fl_str_mv gasificación; biomasa; predicción; temperatura de pirólisis; redes neuronales.
gasification; biomass; prediction; pyrolysis temperature; neural networks.
topic gasificación; biomasa; predicción; temperatura de pirólisis; redes neuronales.
gasification; biomass; prediction; pyrolysis temperature; neural networks.
description In the present study, the control of the pyrolysis temperature was carried out in a gasification process of eucalyptus wood, its prediction is made based on the operating parameters of the reactor to ensure the obtaining of a synthesis gas with the required quality. The results obtained from the mathematical modeling for the prediction of the pyrolysis temperature with the use of artificial intelligence techniques and the development of artificial neural networks are shown, with experimental data of the process. For this reason, an experimental statistical design of type 3n was implemented, with two additional replications, by means of which the training of an artificial neural network capable of predicting the pyrolysis temperature in a downdraft type gasifier with cogeneration was carried out. The prediction of the pyrolysis temperature has an error of 4.6 oC and an adjustment of 93.71%, adequate values ​​for this working parameter.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/802
10.32911/as.2021.v14.n2.802
url http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/802
identifier_str_mv 10.32911/as.2021.v14.n2.802
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/802/984
http://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/802/992
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad Nacional Santiago Antúnez de Mayolo
publisher.none.fl_str_mv Universidad Nacional Santiago Antúnez de Mayolo
dc.source.none.fl_str_mv Aporte Santiaguino; Vol. 14, Núm. 2 (2021): Julio-Diciembre; pág. 212-226
2616-9541
2070-836X
reponame:Revistas - Universidad Nacional Santiago Antunez de Mayolo
instname:Universidad Nacional Santiago Antúnez de Mayolo
instacron:UNASAM
instname_str Universidad Nacional Santiago Antúnez de Mayolo
instacron_str UNASAM
institution UNASAM
reponame_str Revistas - Universidad Nacional Santiago Antunez de Mayolo
collection Revistas - Universidad Nacional Santiago Antunez de Mayolo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1842712197436801024
score 12.660197
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).