Predicción del rendimiento en el examen de admisión a la UNALM utilizando las técnicas de Análisis Discriminante Lineal y Análisis Discriminante con Algoritmos Genéticos

Descripción del Articulo

El objetivo de la investigación fue probar la hipótesis que la tasa de error de clasificación utilizando el análisis discriminante con algoritmos genéticos es menor a la que se obtiene con el análisis discriminante lineal de Fisher. La aplicación se efectuó en la predicción del rendimiento en el exa...

Descripción completa

Detalles Bibliográficos
Autores: Rado H, Joao M., Salinas F., Jesús W., Rosas V., Fernando R.
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad Nacional Agraria La Molina
Repositorio:Revistas - Universidad Nacional Agraria La Molina
Lenguaje:español
OAI Identifier:oai:revistas.lamolina.edu.pe:article/474
Enlace del recurso:https://revistas.lamolina.edu.pe/index.php/acu/article/view/474
Nivel de acceso:acceso abierto
Descripción
Sumario:El objetivo de la investigación fue probar la hipótesis que la tasa de error de clasificación utilizando el análisis discriminante con algoritmos genéticos es menor a la que se obtiene con el análisis discriminante lineal de Fisher. La aplicación se efectuó en la predicción del rendimiento en el examen de admisión de la Universidad Nacional Agraria La Molina de los postulantes cuya preparación se realizó en su Centro de Estudios Preuniversitarios. En la técnica de algoritmos genéticos se empleó el método de selección, cruce y mutación que permitió realizar la búsqueda de funciones discriminantes con error mínimo. Los resultados del estudio indican que el análisis discriminante con algoritmos genéticos proporcionó una función discriminante más eficiente que la proporcionada por Fisher.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).