MODELAMIENTO ESTOCÁSTICO DE LAS DESCARGAS DEL RÍO PISCO / PERÚ CON FINES DE APROVISIONAMIENTO HÍDRICO

Descripción del Articulo

El modelamiento estocástico de las descargas de un río es importante porque permite predecir su comportamiento a futuro, constituyéndose en una herramienta en la gestión de los recursos hídricos. En ese sentido, el objetivo del trabajo fue modelar las descargas medias anuales del río Pisco / Ica / P...

Descripción completa

Detalles Bibliográficos
Autores: del Aguila Ríos, Sandra, Mejía Marcacuzco, Jesús Abel
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional Agraria La Molina
Repositorio:Revistas - Universidad Nacional Agraria La Molina
Lenguaje:español
OAI Identifier:oai:revistas.lamolina.edu.pe:article/1558
Enlace del recurso:https://revistas.lamolina.edu.pe/index.php/eau/article/view/1558
Nivel de acceso:acceso abierto
Materia:modelos estocásticos
modelos autorregresivos
simulación
recursos hídricos.
Descripción
Sumario:El modelamiento estocástico de las descargas de un río es importante porque permite predecir su comportamiento a futuro, constituyéndose en una herramienta en la gestión de los recursos hídricos. En ese sentido, el objetivo del trabajo fue modelar las descargas medias anuales del río Pisco / Ica / Perú con el programa MAR1 (Modelo autorregresivo de orden 1), a través del análisis de su serie temporal, para simular y cuantificar su disponibilidad como parte del Servicio Ecosistémico Hidrológico (SEH) de provisión para distintos usos. Los estadísticos de la serie, parámetros del modelo y el ajuste a distribuciones de probabilidad teóricas, se obtuvieron con el uso del programa MAR1, que es un código computacional en MATLAB R2016a desarrollado específicamente para este trabajo, con el cual se tabularon y graficaron las salidas de descargas de las sucesivas simulaciones realizadas. Los resultados indican que el modelo autorregresivo de orden 1, ajustado a la distribución Gamma, es el más apropiado para modelar las descargas anuales del río Pisco, porque reportan el menor valor de la raíz del menor error medio cuadrático (RMEC). Las pruebas de bondad de ajuste estadística y gráfica reportan igualdad entre estadísticos históricos y simulados, verificándose el principio de aleatoriedad en los residuos de las series simuladas. Además, en la evaluación de los SEH de provisión, se estimó la disponibilidad del agua superficial con fines de almacenamiento, comprobándose la tendencia a la disminución de los volúmenes de descarga del río Pisco.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).