Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management

Descripción del Articulo

This study developed a model based on Support Vector Machines (SVM) and Normalized Difference Vegetation Index (NDVI) time series to classify citrus areas in Álamo, Veracruz, Mexico. MODIS images (MOD13Q1, 250 m resolution) from 2003 to 2022 were used, processed using radiometric correction, noise f...

Descripción completa

Detalles Bibliográficos
Autores: Sánchez-Galván, Fabiola, García-Rodríguez, Rogelio, Salas Martínez, Paulino, Altamirano Herrera, María Xochitl, Bautista-Santos, Horacio, Altamirano Herrera, María Xóchitl
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/7858
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7858
Nivel de acceso:acceso abierto
Materia:sustainable agricultural supply chains
precision agriculture
agrologistics
cadenas de suministro agrícolas sostenibles
agricultura de precisión
agrologística
id REVULIMA_97cc086820f8a581631068d36a78d8d1
oai_identifier_str oai:ojs.pkp.sfu.ca:article/7858
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
dc.title.none.fl_str_mv Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
Clasificación automatizada de superficies citrícolas mediante SVM y patrones temporales de NDVI: aplicaciones para agricultura de precisión y gestión logística
title Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
spellingShingle Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
Sánchez-Galván, Fabiola
sustainable agricultural supply chains
precision agriculture
agrologistics
cadenas de suministro agrícolas sostenibles
agricultura de precisión
agrologística
title_short Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
title_full Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
title_fullStr Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
title_full_unstemmed Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
title_sort Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics management
dc.creator.none.fl_str_mv Sánchez-Galván, Fabiola
García-Rodríguez, Rogelio
Salas Martínez, Paulino
Altamirano Herrera, María Xochitl
Bautista-Santos, Horacio
Sánchez-Galván, Fabiola
García-Rodríguez, Rogelio
Salas Martínez, Paulino
Altamirano Herrera, María Xóchitl
Bautista-Santos, Horacio
Sánchez-Galván, Fabiola
García-Rodríguez, Rogelio
Salas Martínez, Paulino
Altamirano Herrera, María Xóchitl
Bautista-Santos, Horacio
author Sánchez-Galván, Fabiola
author_facet Sánchez-Galván, Fabiola
García-Rodríguez, Rogelio
Salas Martínez, Paulino
Altamirano Herrera, María Xochitl
Bautista-Santos, Horacio
Altamirano Herrera, María Xóchitl
Salas Martínez, Paulino
author_role author
author2 García-Rodríguez, Rogelio
Salas Martínez, Paulino
Altamirano Herrera, María Xochitl
Bautista-Santos, Horacio
Altamirano Herrera, María Xóchitl
Salas Martínez, Paulino
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv sustainable agricultural supply chains
precision agriculture
agrologistics
cadenas de suministro agrícolas sostenibles
agricultura de precisión
agrologística
topic sustainable agricultural supply chains
precision agriculture
agrologistics
cadenas de suministro agrícolas sostenibles
agricultura de precisión
agrologística
description This study developed a model based on Support Vector Machines (SVM) and Normalized Difference Vegetation Index (NDVI) time series to classify citrus areas in Álamo, Veracruz, Mexico. MODIS images (MOD13Q1, 250 m resolution) from 2003 to 2022 were used, processed using radiometric correction, noise filtering, and temporal harmonization. Training areas were classified into four categories: citrus, natural vegetation, grasslands, and urban areas, using 3,759 time series, 50 % of which were positive for citrus. The SVM model (RBF kernel: γ = 0.1, C = 10) achieved an accuracy of 91.4 % using 5-fold cross-validation, with 88% success in citrus and 93.9 % in non-citrus samples. The results showed an average NDVI of 0.74 for citrus, distinguishable from weeds (0.87), although with challenges in small plots due to spatial resolution. The estimates coincided with official data (SIACON) in 2021 (548 ha difference), although they presented discrepancies in years with droughts (2007, 2015) or management changes (2019-2020). Climatic and anthropogenic factors were identified as affecting NDVI dynamics, demonstrating the model’s usefulness for agricultural monitoring limitations include pixel mixing in heterogeneous areas. This work demonstrates that the SVM-NDVI approach is robust for classifying citrus areas at a regional scale, with potential applications in logistics management, such as transport route optimization and crop planning using spatiotemporal NDVI patterns. These findings open up opportunities to integrate remote sensing and machine learning into sustainable agricultural supply chains.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7858
10.26439/interfases2025.n021.7858
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7858
identifier_str_mv 10.26439/interfases2025.n021.7858
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7858/7815
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7858/7830
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 021 (2025); 59-80
Interfases; Núm. 021 (2025); 59-80
Interfases; n. 021 (2025); 59-80
1993-4912
10.26439/interfases2025.n021
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846791802584039424
spelling Automated classification of citrus areas using SVM and NDVI temporal patterns: applications for precision agriculture and logistics managementClasificación automatizada de superficies citrícolas mediante SVM y patrones temporales de NDVI: aplicaciones para agricultura de precisión y gestión logísticaSánchez-Galván, FabiolaGarcía-Rodríguez, Rogelio Salas Martínez, PaulinoAltamirano Herrera, María XochitlBautista-Santos, HoracioSánchez-Galván, FabiolaGarcía-Rodríguez, Rogelio Salas Martínez, PaulinoAltamirano Herrera, María Xóchitl Bautista-Santos, HoracioSánchez-Galván, FabiolaGarcía-Rodríguez, Rogelio Salas Martínez, Paulino Altamirano Herrera, María Xóchitl Bautista-Santos, Horaciosustainable agricultural supply chainsprecision agricultureagrologisticscadenas de suministro agrícolas sosteniblesagricultura de precisiónagrologísticaThis study developed a model based on Support Vector Machines (SVM) and Normalized Difference Vegetation Index (NDVI) time series to classify citrus areas in Álamo, Veracruz, Mexico. MODIS images (MOD13Q1, 250 m resolution) from 2003 to 2022 were used, processed using radiometric correction, noise filtering, and temporal harmonization. Training areas were classified into four categories: citrus, natural vegetation, grasslands, and urban areas, using 3,759 time series, 50 % of which were positive for citrus. The SVM model (RBF kernel: γ = 0.1, C = 10) achieved an accuracy of 91.4 % using 5-fold cross-validation, with 88% success in citrus and 93.9 % in non-citrus samples. The results showed an average NDVI of 0.74 for citrus, distinguishable from weeds (0.87), although with challenges in small plots due to spatial resolution. The estimates coincided with official data (SIACON) in 2021 (548 ha difference), although they presented discrepancies in years with droughts (2007, 2015) or management changes (2019-2020). Climatic and anthropogenic factors were identified as affecting NDVI dynamics, demonstrating the model’s usefulness for agricultural monitoring limitations include pixel mixing in heterogeneous areas. This work demonstrates that the SVM-NDVI approach is robust for classifying citrus areas at a regional scale, with potential applications in logistics management, such as transport route optimization and crop planning using spatiotemporal NDVI patterns. These findings open up opportunities to integrate remote sensing and machine learning into sustainable agricultural supply chains.Este estudio desarrolló un modelo basado en máquinas de vectores de soporte (support vector machines, SVM) y series temporales del índice de vegetación de diferencia normalizada (normalized difference vegetation index, NDVI) para clasificar superficies citrícolas en Álamo, Veracruz, México. Se utilizaron imágenes MODIS (MOD13Q1, 250 m de resolución) de 2003 a 2022, procesadas mediante corrección radiométrica, filtrado de ruido y armonización temporal. Las zonas de entrenamiento se clasificaron en cuatro categorías (cítricos, vegetación natural, pastizales y áreas urbanas) y se utilizaron 3759 series temporales (50 % positivas para cítricos). El modelo SVM (kernel RBF: γ = 0,1, C = 10) alcanzó una precisión del 91,4 % mediante validación cruzada (cinco pliegues), con un 88 % de acierto en cítricos y 93,9 % en no cítricos. Los resultados mostraron un NDVI promedio de 0,74 para cítricos, diferenciable de la maleza (0,87), aunque con desafíos en parcelas pequeñas debido a la resolución espacial. Las estimaciones coincidieron con datos oficiales (SIACON) en 2021 (diferencia de 548 ha), aunque presentaron discrepancias en años con sequías (2007 y 2015) o cambios de manejo (2019 y 2020). Se identificó que factores climáticos y antropogénicos afectan la dinámica del NDVI, lo que evidencia la utilidad del modelo para monitoreo agrícola. Las limitaciones incluyen mezcla de píxeles en áreas heterogéneas. Este trabajo demuestra que el enfoque SVM-NDVI es robusto para la clasificación de superficies citrícolas a escala regional con aplicaciones potenciales en gestión logística, como la optimización de rutas de transporte y la planificación de cosechas mediante patrones espaciotemporales de NDVI. Estos hallazgos abren oportunidades para integrar teledetección y aprendizaje automático en cadenas de suministro agrícola sostenibles.  Universidad de Lima2025-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/785810.26439/interfases2025.n021.7858Interfases; No. 021 (2025); 59-80Interfases; Núm. 021 (2025); 59-80Interfases; n. 021 (2025); 59-801993-491210.26439/interfases2025.n021reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/7858/7815https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7858/7830info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/78582025-08-01T14:51:20Z
score 13.924177
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).