A review of system implementations for diabetes trend identification

Descripción del Articulo

Diabetes mellitus is a chronic disease that appears when the pancreas does not secrete enough insulin or the body does not properly use the insulin it produces. Insulin is a hormone that regulates glucose concentration in the blood: one of the most common effects of uncontrolled diabetes is hypergly...

Descripción completa

Detalles Bibliográficos
Autores: Benites Loja, Rocio Isabel, Coral Ygnacio, Marco Antonio
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/5957
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5957
Nivel de acceso:acceso abierto
Materia:diabetes mellitus
trend identification
preventive software
construction methods
logistic regression
artificial neural networks
identificación de tendencias
software preventivo
métodos de construcción
regresión logística
redes neuronales artificiales
Descripción
Sumario:Diabetes mellitus is a chronic disease that appears when the pancreas does not secrete enough insulin or the body does not properly use the insulin it produces. Insulin is a hormone that regulates glucose concentration in the blood: one of the most common effects of uncontrolled diabetes is hyperglycemia, which seriously damages many organs and body systems over time. In this sense, the development of predictive software, the diagnosis, and subsequent treatment of diabetes, especially of type 1 and 2, which are the most frequent, deserve attention. This paper presents a systematic review of the literature to determine the methods and problems in constructing diabetes-oriented trend identification systems. The results show 16 construction methods used in these systems, the most efficient being logistic regression and artificial neural networks.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).