A A systematic literature review of traffic control system implementations

Descripción del Articulo

Traffic congestion frequently occurs in highly populated cities and can result from poor civil planning or inadequate public transportation. This issue increases traffic accidents, air pollution, fuel loss, and public dissatisfaction. Therefore, implementing traffic control systems that improve traf...

Descripción completa

Detalles Bibliográficos
Autores: Wong Leon, Eduardo Rodrigo, Coral Ygnacio, Marco Antonio
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/6779
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6779
Nivel de acceso:acceso abierto
Materia:traffic control
methods
algorithms
models
YOLO
implementations
control de tráfico
métodos
algoritmos
modelos
implementaciones
Descripción
Sumario:Traffic congestion frequently occurs in highly populated cities and can result from poor civil planning or inadequate public transportation. This issue increases traffic accidents, air pollution, fuel loss, and public dissatisfaction. Therefore, implementing traffic control systems that improve traffic flow and reduce travel times becomes essential. This work conducts a systematic literature review to identify the most efficient methods, algorithms, and models for developing traffic control systems. The review identifies three methods and three algorithms that are highly efficient for these systems, highlighting Bayesian filters and convolutional neural networks. It also shows that You Only Look Once (YOLO) is the most efficient image processing model for these implementations.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).