Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America

Descripción del Articulo

Deep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commissi...

Descripción completa

Detalles Bibliográficos
Autores: Alegre Ibáñez, Víctor Augusto, Lozano Aparicio, Jose Martin
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/5817
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817
Nivel de acceso:acceso abierto
Materia:Deep Learning
GDP forecasting
CEPAL
Neural Network
Aprendizaje Profundo
Pronóstico de PBI
Redes Neuronales
id REVULIMA_839be2a8272ee4472b07f345e218568c
oai_identifier_str oai:revistas.ulima.edu.pe:article/5817
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin AmericaAplicación de métodos de Deep Learning en series de tiempo para el pronóstico de la situación macroeconómica en América LatinaAlegre Ibáñez, Víctor AugustoLozano Aparicio, Jose MartinDeep LearningGDP forecastingCEPALNeural NetworkAprendizaje ProfundoPronóstico de PBICEPALRedes NeuronalesDeep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commission for Latin America and the Caribbean (ECLAC), respectively. For the pre-processing of the data, we decomposed the quarterly series into trend, seasonality, and residual and used them as additional characteristics to provide more information to the models. In addition, outliers resulting from the impact of the COVID-19 pandemic on the world economy were replaced. Multilayer perceptron, convolutional neural networks, LSTM, GRU, and SeqToSeq models were built for each country and their series’ frequency, then evaluated by continuous cross-validation and MAE, RMSE, and MAPE metrics. The optimal models vary for each case.Los métodos de deep learning pueden ser aplicados para generar modelos de pronóstico. Nosotros trabajamos con el producto bruto interno (PBI) de seis países de América Latina: Argentina, Brasil, Chile, Colombia, México y Perú empleando indicadores macroeconómicos anuales y trimestrales, del Banco Mundial y la Comisión Económica para América Latina y el Caribe (CEPAL), respectivamente. Para el preprocesamiento de los datos, a las series trimestrales se agregaron como características adicionales la descomposición de estas en tendencia, estacionalidad y residuo, con la finalidad de aportar más información a los modelos. Además, se reemplazaron datos atípicos producto del impacto de la pandemia del COVID-19 en la economía mundial. Se construyeron modelos de Perceptrón Multi Capa, Red Neuronal Convolucional, LSTM, GRU y SeqToSeq para cada país y frecuencia de sus series, y luego se evaluaron mediante validación cruzada continua y métricas MAE, RMSE y MAPE. Los modelos óptimos varían por cada caso.Universidad de Lima2022-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/581710.26439/interfases2022.n015.5817Interfases; No. 015 (2022); 102-130Interfases; Núm. 015 (2022); 102-130Interfases; n. 015 (2022); 102-1301993-491210.26439/interfases2022.n015reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5740https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5797Derechos de autor 2022 Interfaseshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/58172023-07-24T13:33:18Z
dc.title.none.fl_str_mv Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
Aplicación de métodos de Deep Learning en series de tiempo para el pronóstico de la situación macroeconómica en América Latina
title Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
spellingShingle Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
Alegre Ibáñez, Víctor Augusto
Deep Learning
GDP forecasting
CEPAL
Neural Network
Aprendizaje Profundo
Pronóstico de PBI
CEPAL
Redes Neuronales
title_short Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
title_full Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
title_fullStr Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
title_full_unstemmed Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
title_sort Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
dc.creator.none.fl_str_mv Alegre Ibáñez, Víctor Augusto
Lozano Aparicio, Jose Martin
author Alegre Ibáñez, Víctor Augusto
author_facet Alegre Ibáñez, Víctor Augusto
Lozano Aparicio, Jose Martin
author_role author
author2 Lozano Aparicio, Jose Martin
author2_role author
dc.subject.none.fl_str_mv Deep Learning
GDP forecasting
CEPAL
Neural Network
Aprendizaje Profundo
Pronóstico de PBI
CEPAL
Redes Neuronales
topic Deep Learning
GDP forecasting
CEPAL
Neural Network
Aprendizaje Profundo
Pronóstico de PBI
CEPAL
Redes Neuronales
description Deep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commission for Latin America and the Caribbean (ECLAC), respectively. For the pre-processing of the data, we decomposed the quarterly series into trend, seasonality, and residual and used them as additional characteristics to provide more information to the models. In addition, outliers resulting from the impact of the COVID-19 pandemic on the world economy were replaced. Multilayer perceptron, convolutional neural networks, LSTM, GRU, and SeqToSeq models were built for each country and their series’ frequency, then evaluated by continuous cross-validation and MAE, RMSE, and MAPE metrics. The optimal models vary for each case.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817
10.26439/interfases2022.n015.5817
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817
identifier_str_mv 10.26439/interfases2022.n015.5817
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5740
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5797
dc.rights.none.fl_str_mv Derechos de autor 2022 Interfases
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Interfases
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 015 (2022); 102-130
Interfases; Núm. 015 (2022); 102-130
Interfases; n. 015 (2022); 102-130
1993-4912
10.26439/interfases2022.n015
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841719309173260288
score 12.860346
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).