Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America
Descripción del Articulo
Deep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commissi...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | Revistas - Universidad de Lima |
Lenguaje: | español |
OAI Identifier: | oai:revistas.ulima.edu.pe:article/5817 |
Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817 |
Nivel de acceso: | acceso abierto |
Materia: | Deep Learning GDP forecasting CEPAL Neural Network Aprendizaje Profundo Pronóstico de PBI Redes Neuronales |
id |
REVULIMA_839be2a8272ee4472b07f345e218568c |
---|---|
oai_identifier_str |
oai:revistas.ulima.edu.pe:article/5817 |
network_acronym_str |
REVULIMA |
network_name_str |
Revistas - Universidad de Lima |
repository_id_str |
|
spelling |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin AmericaAplicación de métodos de Deep Learning en series de tiempo para el pronóstico de la situación macroeconómica en América LatinaAlegre Ibáñez, Víctor AugustoLozano Aparicio, Jose MartinDeep LearningGDP forecastingCEPALNeural NetworkAprendizaje ProfundoPronóstico de PBICEPALRedes NeuronalesDeep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commission for Latin America and the Caribbean (ECLAC), respectively. For the pre-processing of the data, we decomposed the quarterly series into trend, seasonality, and residual and used them as additional characteristics to provide more information to the models. In addition, outliers resulting from the impact of the COVID-19 pandemic on the world economy were replaced. Multilayer perceptron, convolutional neural networks, LSTM, GRU, and SeqToSeq models were built for each country and their series’ frequency, then evaluated by continuous cross-validation and MAE, RMSE, and MAPE metrics. The optimal models vary for each case.Los métodos de deep learning pueden ser aplicados para generar modelos de pronóstico. Nosotros trabajamos con el producto bruto interno (PBI) de seis países de América Latina: Argentina, Brasil, Chile, Colombia, México y Perú empleando indicadores macroeconómicos anuales y trimestrales, del Banco Mundial y la Comisión Económica para América Latina y el Caribe (CEPAL), respectivamente. Para el preprocesamiento de los datos, a las series trimestrales se agregaron como características adicionales la descomposición de estas en tendencia, estacionalidad y residuo, con la finalidad de aportar más información a los modelos. Además, se reemplazaron datos atípicos producto del impacto de la pandemia del COVID-19 en la economía mundial. Se construyeron modelos de Perceptrón Multi Capa, Red Neuronal Convolucional, LSTM, GRU y SeqToSeq para cada país y frecuencia de sus series, y luego se evaluaron mediante validación cruzada continua y métricas MAE, RMSE y MAPE. Los modelos óptimos varían por cada caso.Universidad de Lima2022-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/581710.26439/interfases2022.n015.5817Interfases; No. 015 (2022); 102-130Interfases; Núm. 015 (2022); 102-130Interfases; n. 015 (2022); 102-1301993-491210.26439/interfases2022.n015reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5740https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5797Derechos de autor 2022 Interfaseshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/58172023-07-24T13:33:18Z |
dc.title.none.fl_str_mv |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America Aplicación de métodos de Deep Learning en series de tiempo para el pronóstico de la situación macroeconómica en América Latina |
title |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America |
spellingShingle |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America Alegre Ibáñez, Víctor Augusto Deep Learning GDP forecasting CEPAL Neural Network Aprendizaje Profundo Pronóstico de PBI CEPAL Redes Neuronales |
title_short |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America |
title_full |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America |
title_fullStr |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America |
title_full_unstemmed |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America |
title_sort |
Application of Deep Learning Methods in Time Series for the Forecast of the Macroeconomic Situation in Latin America |
dc.creator.none.fl_str_mv |
Alegre Ibáñez, Víctor Augusto Lozano Aparicio, Jose Martin |
author |
Alegre Ibáñez, Víctor Augusto |
author_facet |
Alegre Ibáñez, Víctor Augusto Lozano Aparicio, Jose Martin |
author_role |
author |
author2 |
Lozano Aparicio, Jose Martin |
author2_role |
author |
dc.subject.none.fl_str_mv |
Deep Learning GDP forecasting CEPAL Neural Network Aprendizaje Profundo Pronóstico de PBI CEPAL Redes Neuronales |
topic |
Deep Learning GDP forecasting CEPAL Neural Network Aprendizaje Profundo Pronóstico de PBI CEPAL Redes Neuronales |
description |
Deep learning methods can be applied to generate predictive models. We worked with the gross domestic product (GDP) of six Latin American countries: Argentina, Brazil, Chile, Colombia, Mexico, and Peru, using annual and quarterly macroeconomic indicators from the World Bank and the Economic Commission for Latin America and the Caribbean (ECLAC), respectively. For the pre-processing of the data, we decomposed the quarterly series into trend, seasonality, and residual and used them as additional characteristics to provide more information to the models. In addition, outliers resulting from the impact of the COVID-19 pandemic on the world economy were replaced. Multilayer perceptron, convolutional neural networks, LSTM, GRU, and SeqToSeq models were built for each country and their series’ frequency, then evaluated by continuous cross-validation and MAE, RMSE, and MAPE metrics. The optimal models vary for each case. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817 10.26439/interfases2022.n015.5817 |
url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817 |
identifier_str_mv |
10.26439/interfases2022.n015.5817 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5740 https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5817/5797 |
dc.rights.none.fl_str_mv |
Derechos de autor 2022 Interfases https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2022 Interfases https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Interfases; No. 015 (2022); 102-130 Interfases; Núm. 015 (2022); 102-130 Interfases; n. 015 (2022); 102-130 1993-4912 10.26439/interfases2022.n015 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
Revistas - Universidad de Lima |
collection |
Revistas - Universidad de Lima |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841719309173260288 |
score |
12.860346 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).