Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms
Descripción del Articulo
Internal fraud is a big problem for companies since it causes significant monetary losses. Several research studies have proposed to improve the personnel selection process using data mining. The present work suggests to use applicants’ historical information in order to predict if they will commit...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Universidad de Lima |
Repositorio: | Revistas - Universidad de Lima |
Lenguaje: | español |
OAI Identifier: | oai:revistas.ulima.edu.pe:article/4637 |
Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637 |
Nivel de acceso: | acceso abierto |
Materia: | Supervised learning fraud prediction antisocial personality disorder internal fraud Aprendizaje supervisado predicción de fraude trastorno antisocial fraude interno |
id |
REVULIMA_5df845bcf776c9404c9352f2bf919272 |
---|---|
oai_identifier_str |
oai:revistas.ulima.edu.pe:article/4637 |
network_acronym_str |
REVULIMA |
network_name_str |
Revistas - Universidad de Lima |
repository_id_str |
|
spelling |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithmsPredicción de postulantes que cometerán fraude interno en una compañía con algoritmos de aprendizaje supervisadoEspinoza-Montalvo, SergioSupervised learningfraud predictionantisocial personality disorderinternal fraudAprendizaje supervisadopredicción de fraudetrastorno antisocialfraude internoInternal fraud is a big problem for companies since it causes significant monetary losses. Several research studies have proposed to improve the personnel selection process using data mining. The present work suggests to use applicants’ historical information in order to predict if they will commit fraud during their working period in a company. There are models with high precision level but with a higher error rate to find fraud. After several experimentations, around seven variables which contribute more to the model were found. Some of these variables match those mentioned in studies about antisocial personality disorder. The algorithm with best results was a convolutional neural network with 80% accuracy rate. It is concluded that applicants’ information is important to establish if they will commit internal fraud during their working period in a company.El fraude interno es un gran problema para las empresas, ocasionando pérdidas monetarias importantes. Diversas investigaciones han propuesto mejoras al proceso de selección de personal utilizando minería de datos. El presente trabajo propone utilizar la información histórica de postulantes a una empresa para predecir si cometerán fraude durante su estadía. Existen modelos con un nivel de precisión alto, pero que tienen un error de clasificación mayor para encontrar los casos de fraude. Después de diversas experimentaciones, se identifican alrededor de 7 características de este universo que aportan más al modelo. Algunas de estas variables coinciden con variables mencionadas en la literatura encontrada sobre trastornos antisociales. El algoritmo con mejores resultados es una red neuronal convolucional con 80 % de precisión. Se concluye que hay valor en la información de postulantes para determinar si cometerán fraude interno durante su estadía en la empresa. Universidad de Lima2019-12-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/463710.26439/interfases2019.n012.4637Interfases; No. 012 (2019); 49-60Interfases; Núm. 012 (2019); 49-60Interfases; n. 012 (2019); 49-601993-491210.26439/interfases2019.n012reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637/4617Derechos de autor 2020 Interfasesinfo:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/46372023-07-24T13:32:44Z |
dc.title.none.fl_str_mv |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms Predicción de postulantes que cometerán fraude interno en una compañía con algoritmos de aprendizaje supervisado |
title |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms |
spellingShingle |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms Espinoza-Montalvo, Sergio Supervised learning fraud prediction antisocial personality disorder internal fraud Aprendizaje supervisado predicción de fraude trastorno antisocial fraude interno |
title_short |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms |
title_full |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms |
title_fullStr |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms |
title_full_unstemmed |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms |
title_sort |
Prediction of applicants who will commit internal fraud in a company using supervised learning algorithms |
dc.creator.none.fl_str_mv |
Espinoza-Montalvo, Sergio |
author |
Espinoza-Montalvo, Sergio |
author_facet |
Espinoza-Montalvo, Sergio |
author_role |
author |
dc.subject.none.fl_str_mv |
Supervised learning fraud prediction antisocial personality disorder internal fraud Aprendizaje supervisado predicción de fraude trastorno antisocial fraude interno |
topic |
Supervised learning fraud prediction antisocial personality disorder internal fraud Aprendizaje supervisado predicción de fraude trastorno antisocial fraude interno |
description |
Internal fraud is a big problem for companies since it causes significant monetary losses. Several research studies have proposed to improve the personnel selection process using data mining. The present work suggests to use applicants’ historical information in order to predict if they will commit fraud during their working period in a company. There are models with high precision level but with a higher error rate to find fraud. After several experimentations, around seven variables which contribute more to the model were found. Some of these variables match those mentioned in studies about antisocial personality disorder. The algorithm with best results was a convolutional neural network with 80% accuracy rate. It is concluded that applicants’ information is important to establish if they will commit internal fraud during their working period in a company. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637 10.26439/interfases2019.n012.4637 |
url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637 |
identifier_str_mv |
10.26439/interfases2019.n012.4637 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/4637/4617 |
dc.rights.none.fl_str_mv |
Derechos de autor 2020 Interfases info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2020 Interfases |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Interfases; No. 012 (2019); 49-60 Interfases; Núm. 012 (2019); 49-60 Interfases; n. 012 (2019); 49-60 1993-4912 10.26439/interfases2019.n012 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
Revistas - Universidad de Lima |
collection |
Revistas - Universidad de Lima |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1844893189978193920 |
score |
13.02468 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).