Heat-switchable polymers

Descripción del Articulo

En años recientes, una de las áreas de los polímeros más ampliamente investigadas, por las importantes aplicaciones tecnológicas a que pueden dar lugar, es la síntesis de macromoléculas conmutables o sensibles a cambios en el medio ambiente tales como; por ejemplo, temperatura, pH, luz, y campo eléc...

Descripción completa

Detalles Bibliográficos
Autor: Rueda, Juan Carlos
Formato: artículo
Fecha de Publicación:2021
Institución:Sociedad Química del Perú
Repositorio:Revista de la Sociedad Química del Perú
Lenguaje:español
OAI Identifier:oai:rsqp.revistas.sqperu.org.pe:article/346
Enlace del recurso:http://revistas.sqperu.org.pe/index.php/revistasqperu/article/view/346
Nivel de acceso:acceso abierto
id REVSQP_c001e711332342b5d642b8dd1902cc0e
oai_identifier_str oai:rsqp.revistas.sqperu.org.pe:article/346
network_acronym_str REVSQP
network_name_str Revista de la Sociedad Química del Perú
repository_id_str
spelling Heat-switchable polymersPolimeros termoconmutablesRueda, Juan CarlosEn años recientes, una de las áreas de los polímeros más ampliamente investigadas, por las importantes aplicaciones tecnológicas a que pueden dar lugar, es la síntesis de macromoléculas conmutables o sensibles a cambios en el medio ambiente tales como; por ejemplo, temperatura, pH, luz, y campo eléctrico o magnético. Este tipo de polímeros, conmutables o sensibles, tienen alto potencial para aplicaciones en biomateriales, en microsistemas, sensores y catálisis, entre otros. Entre los polímeros conmutables que más se han investigado se encuentran los polímeros termosensibles Se pueden obtener polímeros con respuesta térmica usando los homopolímeros y copolímeros de N-isopropilacrilamida, N-vinilcaprolactama, y vinilmetiléter. Sin embargo, en años recientes, se descubrió que también algunos polímeros de 2-oxazolinas tienen la propiedad de tener sensibilidad térmica, tales como, poli(isopropil-2-oxazolina), poli(n-propil-2-oxazolina), poli(etil-2-oxazolina) y poli(ciclopropil-2-oxazolina). Los polímeros termosensibles presentan, en solución acuosa, una transición conformacional bien definida, donde las propiedades físicas cambian drásticamente en un estrecho rango de temperatura. Esta temperatura es denominada en inglés “Low critical solution temperature” (LCST). Por ejemplo, los polímeros de N-isopropilacrilamida, cuando están disueltos en agua, pasan a los 32 grados centígrados de un estado hidrofílico a un estado hidrofóbico y precipitan o se dispersan en el medio acuoso y este fenómeno es reversible, ya que, al disminuir la temperatura por debajo de los 32°C, se disuelven nuevamente, pudiendo servir, entonces, como un “switch” o un interruptor macromolecular. Esta temperatura LCST se puede disminuir o aumentar al copolimerizar la N-isopropilacrilamida con monómeros hidrofóbicos o hidrofílicos, respectivamente, o mediante la adición de surfactantes o sales inorgánicas. Se pueden obtener temperaturas de transición cercanas a la temperatura corporal humana, abriendo la posibilidad para aplicaciones tecnológicas muy interesantes. La transición conformacional LCST se puede utilizar en términos prácticos, por ejemplo, para elaborar hidrogeles termosensibles que puedan servir como sistemas de liberación controlada de medicamentos y fertilizantes, en ingeniería de tejidos o en válvulas y sensores para microfluidos. En el Perú, se debe promover la investigación básica y aplicada en polímeros y, en particular, en este tipo de polímeros conmutables que tienen un potencial de alto valor agregado. Se deben formar, en nuestro país, recursos humanos especializados en los polímeros tradicionales, pero también en los polímeros funcionalizados o con propiedades especiales.Sociedad Química del Perú2021-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTexttextoapplication/pdfhttp://revistas.sqperu.org.pe/index.php/revistasqperu/article/view/34610.37761/rsqp.v87i2.346Revista de la Sociedad Química del Perú; Vol. 87 Núm. 2 (2021): Revista de la Sociedad Química del Perú; 95Journal of the Chemical Society of Peru; Vol. 87 No. 2 (2021): Journal of Sociedad Química del Perú; 952309-87401810-634X10.37761/rsqp.v87i2reponame:Revista de la Sociedad Química del Perúinstname:Sociedad Química del Perúinstacron:SQPspahttp://revistas.sqperu.org.pe/index.php/revistasqperu/article/view/346/30020212021info:eu-repo/semantics/openAccessoai:rsqp.revistas.sqperu.org.pe:article/3462022-01-13T23:43:16Z
dc.title.none.fl_str_mv Heat-switchable polymers
Polimeros termoconmutables
title Heat-switchable polymers
spellingShingle Heat-switchable polymers
Rueda, Juan Carlos
title_short Heat-switchable polymers
title_full Heat-switchable polymers
title_fullStr Heat-switchable polymers
title_full_unstemmed Heat-switchable polymers
title_sort Heat-switchable polymers
dc.creator.none.fl_str_mv Rueda, Juan Carlos
author Rueda, Juan Carlos
author_facet Rueda, Juan Carlos
author_role author
description En años recientes, una de las áreas de los polímeros más ampliamente investigadas, por las importantes aplicaciones tecnológicas a que pueden dar lugar, es la síntesis de macromoléculas conmutables o sensibles a cambios en el medio ambiente tales como; por ejemplo, temperatura, pH, luz, y campo eléctrico o magnético. Este tipo de polímeros, conmutables o sensibles, tienen alto potencial para aplicaciones en biomateriales, en microsistemas, sensores y catálisis, entre otros. Entre los polímeros conmutables que más se han investigado se encuentran los polímeros termosensibles Se pueden obtener polímeros con respuesta térmica usando los homopolímeros y copolímeros de N-isopropilacrilamida, N-vinilcaprolactama, y vinilmetiléter. Sin embargo, en años recientes, se descubrió que también algunos polímeros de 2-oxazolinas tienen la propiedad de tener sensibilidad térmica, tales como, poli(isopropil-2-oxazolina), poli(n-propil-2-oxazolina), poli(etil-2-oxazolina) y poli(ciclopropil-2-oxazolina). Los polímeros termosensibles presentan, en solución acuosa, una transición conformacional bien definida, donde las propiedades físicas cambian drásticamente en un estrecho rango de temperatura. Esta temperatura es denominada en inglés “Low critical solution temperature” (LCST). Por ejemplo, los polímeros de N-isopropilacrilamida, cuando están disueltos en agua, pasan a los 32 grados centígrados de un estado hidrofílico a un estado hidrofóbico y precipitan o se dispersan en el medio acuoso y este fenómeno es reversible, ya que, al disminuir la temperatura por debajo de los 32°C, se disuelven nuevamente, pudiendo servir, entonces, como un “switch” o un interruptor macromolecular. Esta temperatura LCST se puede disminuir o aumentar al copolimerizar la N-isopropilacrilamida con monómeros hidrofóbicos o hidrofílicos, respectivamente, o mediante la adición de surfactantes o sales inorgánicas. Se pueden obtener temperaturas de transición cercanas a la temperatura corporal humana, abriendo la posibilidad para aplicaciones tecnológicas muy interesantes. La transición conformacional LCST se puede utilizar en términos prácticos, por ejemplo, para elaborar hidrogeles termosensibles que puedan servir como sistemas de liberación controlada de medicamentos y fertilizantes, en ingeniería de tejidos o en válvulas y sensores para microfluidos. En el Perú, se debe promover la investigación básica y aplicada en polímeros y, en particular, en este tipo de polímeros conmutables que tienen un potencial de alto valor agregado. Se deben formar, en nuestro país, recursos humanos especializados en los polímeros tradicionales, pero también en los polímeros funcionalizados o con propiedades especiales.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Text
texto
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.sqperu.org.pe/index.php/revistasqperu/article/view/346
10.37761/rsqp.v87i2.346
url http://revistas.sqperu.org.pe/index.php/revistasqperu/article/view/346
identifier_str_mv 10.37761/rsqp.v87i2.346
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.sqperu.org.pe/index.php/revistasqperu/article/view/346/300
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv 2021
2021
dc.publisher.none.fl_str_mv Sociedad Química del Perú
publisher.none.fl_str_mv Sociedad Química del Perú
dc.source.none.fl_str_mv Revista de la Sociedad Química del Perú; Vol. 87 Núm. 2 (2021): Revista de la Sociedad Química del Perú; 95
Journal of the Chemical Society of Peru; Vol. 87 No. 2 (2021): Journal of Sociedad Química del Perú; 95
2309-8740
1810-634X
10.37761/rsqp.v87i2
reponame:Revista de la Sociedad Química del Perú
instname:Sociedad Química del Perú
instacron:SQP
instname_str Sociedad Química del Perú
instacron_str SQP
institution SQP
reponame_str Revista de la Sociedad Química del Perú
collection Revista de la Sociedad Química del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1853582517650587648
score 12.6547
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).