Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners

Descripción del Articulo

This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretic...

Descripción completa

Detalles Bibliográficos
Autores: Alejo, Javier, Favata, Federico, Montes-Rojas, Gabriel, Trombetta, Martín
Formato: artículo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/24201
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/24201
Nivel de acceso:acceso abierto
Materia:Quantile regression
Unconditional quantile regression
Influence functions
id REVPUCP_f72232be4d85f287e9f28d4904eb7f21
oai_identifier_str oai:revistaspuc:article/24201
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling Conditional vs Unconditional Quantile Regression Models: A Guide to PractitionersAlejo, JavierFavata, FedericoMontes-Rojas, GabrielTrombetta, MartínQuantile regressionUnconditional quantile regressionInfluence functionsThis paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate, the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQR coefficients can take and provides a way to detect misspecification. The key here is a match between CQR whose predicted values are the closest to the unconditional quantile. For a binary covariate, however, we derive a new analytical relationship. We illustrate these models using age returns and gender gap in Argentina for 2019 and 2020.Pontificia Universidad Católica del Perú2021-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/2420110.18800/economia.202102.004Economía; Volume 44 Issue 88 (2021); 76-932304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/24201/23459Derechos de autor 2021 Gabriel Montes-Rojas, Javier Alejo, Federico Favata, Martín Trombettahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/242012022-03-16T13:32:35Z
dc.title.none.fl_str_mv Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
spellingShingle Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
Alejo, Javier
Quantile regression
Unconditional quantile regression
Influence functions
title_short Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_full Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_fullStr Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_full_unstemmed Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
title_sort Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
dc.creator.none.fl_str_mv Alejo, Javier
Favata, Federico
Montes-Rojas, Gabriel
Trombetta, Martín
author Alejo, Javier
author_facet Alejo, Javier
Favata, Federico
Montes-Rojas, Gabriel
Trombetta, Martín
author_role author
author2 Favata, Federico
Montes-Rojas, Gabriel
Trombetta, Martín
author2_role author
author
author
dc.subject.none.fl_str_mv Quantile regression
Unconditional quantile regression
Influence functions
topic Quantile regression
Unconditional quantile regression
Influence functions
description This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate, the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQR coefficients can take and provides a way to detect misspecification. The key here is a match between CQR whose predicted values are the closest to the unconditional quantile. For a binary covariate, however, we derive a new analytical relationship. We illustrate these models using age returns and gender gap in Argentina for 2019 and 2020.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/24201
10.18800/economia.202102.004
url http://revistas.pucp.edu.pe/index.php/economia/article/view/24201
identifier_str_mv 10.18800/economia.202102.004
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/24201/23459
dc.rights.none.fl_str_mv Derechos de autor 2021 Gabriel Montes-Rojas, Javier Alejo, Federico Favata, Martín Trombetta
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2021 Gabriel Montes-Rojas, Javier Alejo, Federico Favata, Martín Trombetta
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv Economía; Volume 44 Issue 88 (2021); 76-93
2304-4306
0254-4415
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836736806796656640
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).