A Power Booster Factor for Out-of-Sample Tests of Predictability

Descripción del Articulo

In this paper we introduce a “power booster factor” for out-of-sample tests of predictability. The relevant econometric environment is one in which the econometrician wants to compare the population Mean Squared Prediction Errors (MSPE) of two models: one big nesting model, and another smaller neste...

Descripción completa

Detalles Bibliográficos
Autor: Pincheira Brown, Pablo
Formato: artículo
Fecha de Publicación:2022
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/25655
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/25655
Nivel de acceso:acceso abierto
Materia:Time-series
Inflation
Exchange rates
Random walk
Out-of-sample
id REVPUCP_c5335fb0ba88e866bf51fb9820ba22e1
oai_identifier_str oai:ojs.pkp.sfu.ca:article/25655
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling A Power Booster Factor for Out-of-Sample Tests of PredictabilityPincheira Brown, PabloTime-seriesInflationExchange ratesRandom walkOut-of-sampleIn this paper we introduce a “power booster factor” for out-of-sample tests of predictability. The relevant econometric environment is one in which the econometrician wants to compare the population Mean Squared Prediction Errors (MSPE) of two models: one big nesting model, and another smaller nested model. Although our factor can be used to improve finite sample properties of several out-of-sample tests of predictability, in this paper we focus on the widely used test developed by Clark and West (2006, 2007). Our new test multiplies the Clark and West t-statistic by a factor that should be close to one under the null hypothesis that the short nested model is the true model, but that should be greater than one under the alternative hypothesis that the big nesting model is more adequate. We use Monte Carlo simulations to explore the size and power of our approach. Our simulations reveal that the new test is well sized and powerful. In particular, it tends to be less undersized and more powerful than the test by Clark and West (2006, 2007). Although most of the gains in power are associated to size improvements, we also obtain gains in size-adjusted-power. Finally we illustrate the use of our approach when evaluating the ability that an international core inflation factor has to predict core inflation in a sample of 30 OECD economies. With our “power booster factor” more rejections of the null hypothesis are obtained, indicating a strong influence of global inflation in a selected group of these OECD countries.Pontificia Universidad Católica del Perú2022-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/25655Economia; Vol. 45 No. 89 (2022): Recent Developments in Inflation Dynamics; 150-183Economía; Vol. 45 Núm. 89 (2022): Recent Developments in Inflation Dynamics; 150-1832304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/25655/24154info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/256552022-08-03T19:22:52Z
dc.title.none.fl_str_mv A Power Booster Factor for Out-of-Sample Tests of Predictability
title A Power Booster Factor for Out-of-Sample Tests of Predictability
spellingShingle A Power Booster Factor for Out-of-Sample Tests of Predictability
Pincheira Brown, Pablo
Time-series
Inflation
Exchange rates
Random walk
Out-of-sample
title_short A Power Booster Factor for Out-of-Sample Tests of Predictability
title_full A Power Booster Factor for Out-of-Sample Tests of Predictability
title_fullStr A Power Booster Factor for Out-of-Sample Tests of Predictability
title_full_unstemmed A Power Booster Factor for Out-of-Sample Tests of Predictability
title_sort A Power Booster Factor for Out-of-Sample Tests of Predictability
dc.creator.none.fl_str_mv Pincheira Brown, Pablo
author Pincheira Brown, Pablo
author_facet Pincheira Brown, Pablo
author_role author
dc.subject.none.fl_str_mv Time-series
Inflation
Exchange rates
Random walk
Out-of-sample
topic Time-series
Inflation
Exchange rates
Random walk
Out-of-sample
description In this paper we introduce a “power booster factor” for out-of-sample tests of predictability. The relevant econometric environment is one in which the econometrician wants to compare the population Mean Squared Prediction Errors (MSPE) of two models: one big nesting model, and another smaller nested model. Although our factor can be used to improve finite sample properties of several out-of-sample tests of predictability, in this paper we focus on the widely used test developed by Clark and West (2006, 2007). Our new test multiplies the Clark and West t-statistic by a factor that should be close to one under the null hypothesis that the short nested model is the true model, but that should be greater than one under the alternative hypothesis that the big nesting model is more adequate. We use Monte Carlo simulations to explore the size and power of our approach. Our simulations reveal that the new test is well sized and powerful. In particular, it tends to be less undersized and more powerful than the test by Clark and West (2006, 2007). Although most of the gains in power are associated to size improvements, we also obtain gains in size-adjusted-power. Finally we illustrate the use of our approach when evaluating the ability that an international core inflation factor has to predict core inflation in a sample of 30 OECD economies. With our “power booster factor” more rejections of the null hypothesis are obtained, indicating a strong influence of global inflation in a selected group of these OECD countries.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/25655
url http://revistas.pucp.edu.pe/index.php/economia/article/view/25655
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/25655/24154
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv Economia; Vol. 45 No. 89 (2022): Recent Developments in Inflation Dynamics; 150-183
Economía; Vol. 45 Núm. 89 (2022): Recent Developments in Inflation Dynamics; 150-183
2304-4306
0254-4415
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845975229777575936
score 13.885023
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).