The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis

Descripción del Articulo

The aim of this work is to analyze the impact of Covid-19 on indigenous populations in municipalities of Mexico. To analyze this relationship, Bayesian spatio-temporal models are used to capture the complex dynamics of epidemiological transmission in terms of spatial, temporal and joint spatio-tempo...

Descripción completa

Detalles Bibliográficos
Autores: Núñez Medina, Gerardo, Uribe Salas, Felipe
Formato: artículo
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:español
OAI Identifier:oai:revistaspuc:article/26997
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/26997
Nivel de acceso:acceso abierto
Materia:Covid-19
Incidence Rates
INLA
Indigenous Population
Bayesian Hierarchical Model
Spatio-Temporal Analysis
Mexico
Tasas de incidencia
Población indígena
Modelo jerárquico bayesiano. Análisis espacio tempora
Modelo jerárquico bayesiano
Análisis espacio temporal
México
id REVPUCP_68ff3f6e7fd5835c7f105d0548c174b5
oai_identifier_str oai:revistaspuc:article/26997
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
dc.title.none.fl_str_mv The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
Los efectos del COVID-19 en la población indígena de México. Un análisis espacio-temporal bayesiano
title The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
spellingShingle The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
Núñez Medina, Gerardo
Covid-19
Incidence Rates
INLA
Indigenous Population
Bayesian Hierarchical Model
Spatio-Temporal Analysis
Mexico
Covid-19
Tasas de incidencia
INLA
Población indígena
Modelo jerárquico bayesiano. Análisis espacio tempora
Modelo jerárquico bayesiano
Análisis espacio temporal
México
title_short The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
title_full The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
title_fullStr The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
title_full_unstemmed The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
title_sort The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysis
dc.creator.none.fl_str_mv Núñez Medina, Gerardo
Uribe Salas, Felipe
author Núñez Medina, Gerardo
author_facet Núñez Medina, Gerardo
Uribe Salas, Felipe
author_role author
author2 Uribe Salas, Felipe
author2_role author
dc.subject.none.fl_str_mv Covid-19
Incidence Rates
INLA
Indigenous Population
Bayesian Hierarchical Model
Spatio-Temporal Analysis
Mexico
Covid-19
Tasas de incidencia
INLA
Población indígena
Modelo jerárquico bayesiano. Análisis espacio tempora
Modelo jerárquico bayesiano
Análisis espacio temporal
México
topic Covid-19
Incidence Rates
INLA
Indigenous Population
Bayesian Hierarchical Model
Spatio-Temporal Analysis
Mexico
Covid-19
Tasas de incidencia
INLA
Población indígena
Modelo jerárquico bayesiano. Análisis espacio tempora
Modelo jerárquico bayesiano
Análisis espacio temporal
México
description The aim of this work is to analyze the impact of Covid-19 on indigenous populations in municipalities of Mexico. To analyze this relationship, Bayesian spatio-temporal models are used to capture the complex dynamics of epidemiological transmission in terms of spatial, temporal and joint spatio-temporal dependence. These models have the ability to include covariates, such as the percentage of indigenous population, which makes it possible to quantify the effect that the covariate has on the evolution of the epidemic. Likewise, the models allow us to identify spatio-temporal clusters with high and low incidence rates, showing health inequalities based on the proportion of the indigenous population residing in specific municipalities. Contrary to expectations, the results showed a protective effect on the incidence rate of COVID-19 for the indigenous population. Furthermore, a wide heterogeneity was observed in the distribution of COVID-19 incidence rates by municipality, with significant fluctuations over time. The incidence rates of COVID-19 in indigenous populations were low, which may be due to the fact that the indigenous population predominates in municipalities with low population density, less access to health services, and greater social marginalization. However, it is important to interpret these results with caution due to the high level of observed underreporting of COVID-19 cases found in indigenous populations.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/26997
10.18800/kawsaypacha.202401.A006
url http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/26997
identifier_str_mv 10.18800/kawsaypacha.202401.A006
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/26997/26357
http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/26997/26482
dc.rights.none.fl_str_mv Derechos de autor 2024 Gerardo Núñez Medina, Felipe Uribe Salas
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Gerardo Núñez Medina, Felipe Uribe Salas
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. Instituto de la Naturaleza, Tierra y Energía (INTE-PUCP)
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. Instituto de la Naturaleza, Tierra y Energía (INTE-PUCP)
dc.source.none.fl_str_mv Revista Kawsaypacha: Sociedad y Medio Ambiente; Núm. 13 (2024): Revista Kawsaypacha; A-006
2709-3689
2523-2894
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1840901019863613440
spelling The effects of Covid-19 on the indigenous population of Mexico. A Bayesian spatio-temporal analysisLos efectos del COVID-19 en la población indígena de México. Un análisis espacio-temporal bayesianoNúñez Medina, GerardoUribe Salas, FelipeCovid-19Incidence RatesINLAIndigenous PopulationBayesian Hierarchical ModelSpatio-Temporal AnalysisMexicoCovid-19Tasas de incidenciaINLAPoblación indígenaModelo jerárquico bayesiano. Análisis espacio temporaModelo jerárquico bayesianoAnálisis espacio temporalMéxicoThe aim of this work is to analyze the impact of Covid-19 on indigenous populations in municipalities of Mexico. To analyze this relationship, Bayesian spatio-temporal models are used to capture the complex dynamics of epidemiological transmission in terms of spatial, temporal and joint spatio-temporal dependence. These models have the ability to include covariates, such as the percentage of indigenous population, which makes it possible to quantify the effect that the covariate has on the evolution of the epidemic. Likewise, the models allow us to identify spatio-temporal clusters with high and low incidence rates, showing health inequalities based on the proportion of the indigenous population residing in specific municipalities. Contrary to expectations, the results showed a protective effect on the incidence rate of COVID-19 for the indigenous population. Furthermore, a wide heterogeneity was observed in the distribution of COVID-19 incidence rates by municipality, with significant fluctuations over time. The incidence rates of COVID-19 in indigenous populations were low, which may be due to the fact that the indigenous population predominates in municipalities with low population density, less access to health services, and greater social marginalization. However, it is important to interpret these results with caution due to the high level of observed underreporting of COVID-19 cases found in indigenous populations.El trabajo tiene por objetivo analizar el impacto del COVID-19 en poblaciones indígenas de los municipios de México. Para analizar dicha relación se utilizan modelos bayesianos espacio-temporales que permiten capturar la compleja dinámica de la transmisión epidemiológica en términos de dependencia espacial, temporal y espacio-temporal conjunta. Estos modelos tienen la capacidad de incluir covariables, como el porcentaje de población indígena, lo que permite cuantificar el efecto que la covariable ejerce sobre la evolución de la epidemia. Asimismo, los modelos permiten identificar clusters espacio-temporales con altas y bajas tasas de incidencia, evidenciando desigualdades en salud basadas en la proporción de población indígena residente en municipios específicos. Contrario a lo esperado, los resultados mostraron un efecto protector en la tasa de incidencia por COVID-19 para la población indígena. Además, se observó una amplia heterogeneidad en la distribución por municipio de las tasas de incidencia por COVID-19, con fluctuaciones importantes en el tiempo. Las tasas de incidencia de COVID-19 en poblaciones indígenas fueron bajas, lo que puede deberse a que la población indígena predomina en municipios de baja densidad poblacional, con menor acceso a los servicios de salud y mayor marginación social. Sin embargo, es importante interpretar estos resultados con cautela debido al elevado nivel observado de subregistro de casos de COVID-19 encontrado en poblaciones indígenas.Pontificia Universidad Católica del Perú. Instituto de la Naturaleza, Tierra y Energía (INTE-PUCP)2024-04-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/xmlhttp://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/2699710.18800/kawsaypacha.202401.A006Revista Kawsaypacha: Sociedad y Medio Ambiente; Núm. 13 (2024): Revista Kawsaypacha; A-0062709-36892523-2894reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPspahttp://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/26997/26357http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/26997/26482Derechos de autor 2024 Gerardo Núñez Medina, Felipe Uribe Salashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/269972024-05-10T19:34:35Z
score 13.10263
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).