Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
Descripción del Articulo
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is d...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | Revistas - Pontificia Universidad Católica del Perú |
Lenguaje: | inglés |
OAI Identifier: | oai:revistaspuc:article/21103 |
Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/economia/article/view/21103 |
Nivel de acceso: | acceso abierto |
Materia: | MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
id |
REVPUCP_5d6c7b9bbd057c846d4d724fd111ea68 |
---|---|
oai_identifier_str |
oai:revistaspuc:article/21103 |
network_acronym_str |
REVPUCP |
network_name_str |
Revistas - Pontificia Universidad Católica del Perú |
repository_id_str |
|
spelling |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian ApproachAbanto-Valle, Carlos A.Garrafa-Aragón, Hernán B.MMarkov chain Monte CarloNon linear state space modelsScale mixtures of normal distributionsStochastic volatilityThresholdValue-at-RiskExpected shortfallThis paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.Pontificia Universidad Católica del Perú2019-09-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/2110310.18800/economia.201901.002Economía; Volume 42 Issue 83 (2019); 32-532304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850info:eu-repo/semantics/openAccessoai:revistaspuc:article/211032020-03-08T19:16:00Z |
dc.title.none.fl_str_mv |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
spellingShingle |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach Abanto-Valle, Carlos A. MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
title_short |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_full |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_fullStr |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_full_unstemmed |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
title_sort |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
dc.creator.none.fl_str_mv |
Abanto-Valle, Carlos A. Garrafa-Aragón, Hernán B. |
author |
Abanto-Valle, Carlos A. |
author_facet |
Abanto-Valle, Carlos A. Garrafa-Aragón, Hernán B. |
author_role |
author |
author2 |
Garrafa-Aragón, Hernán B. |
author2_role |
author |
dc.subject.none.fl_str_mv |
MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
topic |
MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
description |
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103 10.18800/economia.201901.002 |
url |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103 |
identifier_str_mv |
10.18800/economia.201901.002 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
Economía; Volume 42 Issue 83 (2019); 32-53 2304-4306 0254-4415 reponame:Revistas - Pontificia Universidad Católica del Perú instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
Revistas - Pontificia Universidad Católica del Perú |
collection |
Revistas - Pontificia Universidad Católica del Perú |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836736806050070528 |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).