Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach

Descripción del Articulo

This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is d...

Descripción completa

Detalles Bibliográficos
Autores: Abanto-Valle, Carlos A., Garrafa-Aragón, Hernán B.
Formato: artículo
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/21103
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/21103
Nivel de acceso:acceso abierto
Materia:MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
id REVPUCP_5d6c7b9bbd057c846d4d724fd111ea68
oai_identifier_str oai:revistaspuc:article/21103
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian ApproachAbanto-Valle, Carlos A.Garrafa-Aragón, Hernán B.MMarkov chain Monte CarloNon linear state space modelsScale mixtures of normal distributionsStochastic volatilityThresholdValue-at-RiskExpected shortfallThis paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.Pontificia Universidad Católica del Perú2019-09-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/2110310.18800/economia.201901.002Economía; Volume 42 Issue 83 (2019); 32-532304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850info:eu-repo/semantics/openAccessoai:revistaspuc:article/211032020-03-08T19:16:00Z
dc.title.none.fl_str_mv Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
spellingShingle Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
Abanto-Valle, Carlos A.
MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
title_short Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_full Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_fullStr Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_full_unstemmed Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
title_sort Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
dc.creator.none.fl_str_mv Abanto-Valle, Carlos A.
Garrafa-Aragón, Hernán B.
author Abanto-Valle, Carlos A.
author_facet Abanto-Valle, Carlos A.
Garrafa-Aragón, Hernán B.
author_role author
author2 Garrafa-Aragón, Hernán B.
author2_role author
dc.subject.none.fl_str_mv MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
topic MMarkov chain Monte Carlo
Non linear state space models
Scale mixtures of normal distributions
Stochastic volatility
Threshold
Value-at-Risk
Expected shortfall
description This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/21103
10.18800/economia.201901.002
url http://revistas.pucp.edu.pe/index.php/economia/article/view/21103
identifier_str_mv 10.18800/economia.201901.002
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv Economía; Volume 42 Issue 83 (2019); 32-53
2304-4306
0254-4415
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836736806050070528
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).