Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach
Descripción del Articulo
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is d...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2019 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | Revistas - Pontificia Universidad Católica del Perú |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/21103 |
| Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/economia/article/view/21103 |
| Nivel de acceso: | acceso abierto |
| Materia: | MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
| id |
REVPUCP_2c020b717c2123923edfcdf38af8abeb |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/21103 |
| network_acronym_str |
REVPUCP |
| network_name_str |
Revistas - Pontificia Universidad Católica del Perú |
| repository_id_str |
|
| spelling |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian ApproachAbanto-Valle, Carlos A.Garrafa-Aragón, Hernán B.MMarkov chain Monte CarloNon linear state space modelsScale mixtures of normal distributionsStochastic volatilityThresholdValue-at-RiskExpected shortfallThis paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.Pontificia Universidad Católica del Perú2019-09-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/21103Economia; Vol. 42 No. 83 (2019); 32-53Economía; Vol. 42 Núm. 83 (2019); 32-532304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/211032020-03-08T19:16:00Z |
| dc.title.none.fl_str_mv |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
| title |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
| spellingShingle |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach Abanto-Valle, Carlos A. MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
| title_short |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
| title_full |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
| title_fullStr |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
| title_full_unstemmed |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
| title_sort |
Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach |
| dc.creator.none.fl_str_mv |
Abanto-Valle, Carlos A. Garrafa-Aragón, Hernán B. |
| author |
Abanto-Valle, Carlos A. |
| author_facet |
Abanto-Valle, Carlos A. Garrafa-Aragón, Hernán B. |
| author_role |
author |
| author2 |
Garrafa-Aragón, Hernán B. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
| topic |
MMarkov chain Monte Carlo Non linear state space models Scale mixtures of normal distributions Stochastic volatility Threshold Value-at-Risk Expected shortfall |
| description |
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-09-16 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103 |
| url |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
| publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.source.none.fl_str_mv |
Economia; Vol. 42 No. 83 (2019); 32-53 Economía; Vol. 42 Núm. 83 (2019); 32-53 2304-4306 0254-4415 reponame:Revistas - Pontificia Universidad Católica del Perú instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
Revistas - Pontificia Universidad Católica del Perú |
| collection |
Revistas - Pontificia Universidad Católica del Perú |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846609516257345536 |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).