Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru

Descripción del Articulo

Measuring poverty is a first step to the design of effective public policies, however, it is also essential to know where the poor are located. The main objective of this research is to evaluate the spatial heterogeneity of the factors that influence monetary poverty for each district in Peru. We ap...

Descripción completa

Detalles Bibliográficos
Autores: Palomino, Juan, Sánchez, Thyara
Formato: artículo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/23956
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/23956
Nivel de acceso:acceso abierto
Materia:Geographically Weighted Regression
Monetary poverty
Poverty mapping
Spatial nonstationary
Peru
Spatial heterogeneity
id REVPUCP_12551f2c6a5bca154123fcef4323346e
oai_identifier_str oai:revistaspuc:article/23956
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in PeruPalomino, JuanSánchez, ThyaraGeographically Weighted RegressionMonetary povertyPoverty mappingSpatial nonstationaryPeruSpatial heterogeneityMeasuring poverty is a first step to the design of effective public policies, however, it is also essential to know where the poor are located. The main objective of this research is to evaluate the spatial heterogeneity of the factors that influence monetary poverty for each district in Peru. We apply a Geographically Weighted Regression (GWR) approach, which allows us to capture the non-stationarity of the hidden data and to provide coefficients for each district, unlike the OLS model. This research mainly uses the Poverty Map and the Population and Household Census of Peru, both from 2007 and 2017. The overriding findings of our results indicate that female headship, secondary education, electricity, and sanitation services are directly associated with poverty reduction at the local level. For 2007, significant effects are mainly concentrated in the districts of Pasco, Lima and Cajamarca regions. For 2017, the results show a shift towards districts of Junín, Huancavelica, and Cajamarca regions. Likewise, it is highlighted that the highest mean negative effect on poverty is generated by Secondary Education in the GWR estimates; while malnutrition represents the highest mean positive effect on poverty for the level and intercensal models. Finally, the empirical evidence found in this research can help establish better policy designs at the district level.Pontificia Universidad Católica del Perú2021-05-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/2395610.18800/economia.202101.006Economía; Volume 44 Issue 87 (2021); 89-1142304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/23956/22770http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/239562022-04-12T13:44:15Z
dc.title.none.fl_str_mv Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
title Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
spellingShingle Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
Palomino, Juan
Geographically Weighted Regression
Monetary poverty
Poverty mapping
Spatial nonstationary
Peru
Spatial heterogeneity
title_short Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
title_full Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
title_fullStr Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
title_full_unstemmed Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
title_sort Where Are the Poor Located? A Spatial Heterogeneity Analysis of Monetary Poverty in Peru
dc.creator.none.fl_str_mv Palomino, Juan
Sánchez, Thyara
author Palomino, Juan
author_facet Palomino, Juan
Sánchez, Thyara
author_role author
author2 Sánchez, Thyara
author2_role author
dc.subject.none.fl_str_mv Geographically Weighted Regression
Monetary poverty
Poverty mapping
Spatial nonstationary
Peru
Spatial heterogeneity
topic Geographically Weighted Regression
Monetary poverty
Poverty mapping
Spatial nonstationary
Peru
Spatial heterogeneity
description Measuring poverty is a first step to the design of effective public policies, however, it is also essential to know where the poor are located. The main objective of this research is to evaluate the spatial heterogeneity of the factors that influence monetary poverty for each district in Peru. We apply a Geographically Weighted Regression (GWR) approach, which allows us to capture the non-stationarity of the hidden data and to provide coefficients for each district, unlike the OLS model. This research mainly uses the Poverty Map and the Population and Household Census of Peru, both from 2007 and 2017. The overriding findings of our results indicate that female headship, secondary education, electricity, and sanitation services are directly associated with poverty reduction at the local level. For 2007, significant effects are mainly concentrated in the districts of Pasco, Lima and Cajamarca regions. For 2017, the results show a shift towards districts of Junín, Huancavelica, and Cajamarca regions. Likewise, it is highlighted that the highest mean negative effect on poverty is generated by Secondary Education in the GWR estimates; while malnutrition represents the highest mean positive effect on poverty for the level and intercensal models. Finally, the empirical evidence found in this research can help establish better policy designs at the district level.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/23956
10.18800/economia.202101.006
url http://revistas.pucp.edu.pe/index.php/economia/article/view/23956
identifier_str_mv 10.18800/economia.202101.006
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/23956/22770
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv Economía; Volume 44 Issue 87 (2021); 89-114
2304-4306
0254-4415
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836736806672924672
score 13.871716
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).