Symbolic Regression, Bifurcations, and Logistic Models Applied to Commodity Volatility: A Case Study in the Peruvian Electrode Industry

Descripción del Articulo

This research proposes a methodological framework based on chaotic dynamics and nonlinear equations to analyze the relationship between international stock market indices (Dow Jones and LME) and the price behavior of imported commodities essential for electrode manufacturing in Peru. The volatility...

Descripción completa

Detalles Bibliográficos
Autor: Cáceres Linares, Luis César
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
Repositorio:Revista de investigación científica y tecnológica Llamkasun
Lenguaje:español
OAI Identifier:oai:ojs2.llamkasun.unat.edu.pe:article/140
Enlace del recurso:https://llamkasun.unat.edu.pe/index.php/revista/article/view/140
Nivel de acceso:acceso abierto
Materia:Dinámica caótica
Regresión simbólica
Commodities
Índice Dow Jones
Indice LME
Cadena de suministro
Chaotic dynamics
Symbolic regression
Dow Jones index
LME index
Supply chain
Descripción
Sumario:This research proposes a methodological framework based on chaotic dynamics and nonlinear equations to analyze the relationship between international stock market indices (Dow Jones and LME) and the price behavior of imported commodities essential for electrode manufacturing in Peru. The volatility of these inputs directly impacts the profitability and sustainability of the national welding industry, especially under highly uncertain global conditions. ARIMA models (Box-Jenkins), symbolic regression (SR), and Verhulst logistic equations were applied to model time series of commodity prices from 2018 to 2023. Additionally, bifurcation analysis and the Feigenbaum constant were used to detect chaotic transitions. Results show that nonlinear models outperform traditional linear approaches, with lower Root Mean Square Error (RMSE) in predictive performance. Empirical validation confirmed that erratic market behavior can be anticipated through dynamic attractors. It is concluded that integrating advanced mathematical tools enhances supply chain management by providing a predictive system that reduces uncertainty in the procurement of raw materials. This approach supports better strategic decision-making in the electrode manufacturing industry and may be applicable to other industrial sectors highly sensitive to commodity price fluctuations.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).