Statistical indices from bifactor models

Descripción del Articulo

Many instruments are created with the primary purpose of scaling individuals on a single trait. However psychological traits are often complex and contain domain specific manifestations. As such, many instruments produce data that are consistent with both unidimensional and multidimensional structur...

Descripción completa

Detalles Bibliográficos
Autores: Dominguez-Lara, Sergio, Rodriguez, Anthony
Formato: artículo
Fecha de Publicación:2017
Institución:Instituto Peruano de Orientación Psicológica
Repositorio:Interacciones
Lenguaje:español
OAI Identifier:oai:ojs3114.ejournals.host:article/33
Enlace del recurso:https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33
Nivel de acceso:acceso abierto
Materia:Confirmatory factorial analysis
bifactor
omega
construct reliability
explained common variance
percentage of uncontaminated correlations
id REVIPOPS_cad1d3b82ee28c189e082ab0e1fb13d1
oai_identifier_str oai:ojs3114.ejournals.host:article/33
network_acronym_str REVIPOPS
network_name_str Interacciones
repository_id_str .
spelling Statistical indices from bifactor modelsÍndices estadísticos de modelos bifactorDominguez-Lara, SergioRodriguez, AnthonyConfirmatory factorial analysisbifactoromegaconstruct reliabilityexplained common variancepercentage of uncontaminated correlationsMany instruments are created with the primary purpose of scaling individuals on a single trait. However psychological traits are often complex and contain domain specific manifestations. As such, many instruments produce data that are consistent with both unidimensional and multidimensional structures. Unfortunately, oftentimes, applied researchers make determinations about the final structure based solely on fit indices obtained from structural equation models. Given that fit indices generally favor the bifactor model over competing measurement models it is imperative that researchers make use of the available information the bifactor has to offer in order to compute informative indices including omega reliability coefficients, construct reliability, explained common variance, and percentage of uncontaminated correlations. Said indices provide unique information about the strength of both the general and specific factors in order to draw conclusions about dimensionality and overall scoring of scales (and subscales). Herein, we describe these indices and offer a new module which easily facilitates their computation.Muchos instrumentos se crean con el propósito principal de evaluar sujetos con relación a un solo rasgo. Sin embargo, los rasgos psicológicos son frecuentemente complejos y contienen manifestaciones de dominio específico. Como tal, muchos instrumentos brindan información que son consistentes tanto con las estructuras unidimensionales como las multidimensionales. Por desgracia, muchas veces, los investigadores aplicados hacen determinaciones sobre la estructura final basado únicamente en los índices de ajuste obtenidos a partir de modelos de ecuaciones estructurales. Dado que los índices de ajuste generalmente favorecen al modelo bifactor sobre los modelos de medición competidores, es imperativo que los investigadores hacen uso de la información disponible que los modelos bifactor tienen para ofrecer con el fin de calcular los índices informativos incluyendo coeficientes de confiabilidad omega, confiabilidad del constructo, varianza común explicada, y el porcentaje de correlaciones no contaminadas. Dichos índices proporcionan información acerca de la fuerza tanto de los factores generales como de los factores específicos con el fin de sacar conclusiones acerca de la dimensionalidad y la puntuación global de las escalas (y subescalas). En este documento, se describen estos índices y ofrecen un nuevo módulo que facilita su cálculo.Instituto Peruano de Orientación Psicológica2017-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/vnd.ms-excelhttps://www.ojs.revistainteracciones.com/index.php/rin/article/view/3310.24016/2017.v3n2.51Interacciones; Vol. 3, Num. 2 (2017): Mayo - Agosto; 59-65Interacciones; Vol. 3, Num. 2 (2017): May - Agust; 59-65Interacciones: Revistas de Avances en Psicología; Vol. 3, Num. 2 (2017): May - Agust; 59-652411-59402413-4465reponame:Interaccionesinstname:Instituto Peruano de Orientación Psicológicainstacron:IPOPSspahttps://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/68https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/69https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/214Copyright (c) 2017 Interaccioneshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs3114.ejournals.host:article/332023-11-16T20:19:01Z
dc.title.none.fl_str_mv Statistical indices from bifactor models
Índices estadísticos de modelos bifactor
title Statistical indices from bifactor models
spellingShingle Statistical indices from bifactor models
Dominguez-Lara, Sergio
Confirmatory factorial analysis
bifactor
omega
construct reliability
explained common variance
percentage of uncontaminated correlations
title_short Statistical indices from bifactor models
title_full Statistical indices from bifactor models
title_fullStr Statistical indices from bifactor models
title_full_unstemmed Statistical indices from bifactor models
title_sort Statistical indices from bifactor models
dc.creator.none.fl_str_mv Dominguez-Lara, Sergio
Rodriguez, Anthony
author Dominguez-Lara, Sergio
author_facet Dominguez-Lara, Sergio
Rodriguez, Anthony
author_role author
author2 Rodriguez, Anthony
author2_role author
dc.subject.none.fl_str_mv Confirmatory factorial analysis
bifactor
omega
construct reliability
explained common variance
percentage of uncontaminated correlations
topic Confirmatory factorial analysis
bifactor
omega
construct reliability
explained common variance
percentage of uncontaminated correlations
description Many instruments are created with the primary purpose of scaling individuals on a single trait. However psychological traits are often complex and contain domain specific manifestations. As such, many instruments produce data that are consistent with both unidimensional and multidimensional structures. Unfortunately, oftentimes, applied researchers make determinations about the final structure based solely on fit indices obtained from structural equation models. Given that fit indices generally favor the bifactor model over competing measurement models it is imperative that researchers make use of the available information the bifactor has to offer in order to compute informative indices including omega reliability coefficients, construct reliability, explained common variance, and percentage of uncontaminated correlations. Said indices provide unique information about the strength of both the general and specific factors in order to draw conclusions about dimensionality and overall scoring of scales (and subscales). Herein, we describe these indices and offer a new module which easily facilitates their computation.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33
10.24016/2017.v3n2.51
url https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33
identifier_str_mv 10.24016/2017.v3n2.51
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/68
https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/69
https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/214
dc.rights.none.fl_str_mv Copyright (c) 2017 Interacciones
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Interacciones
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
application/vnd.ms-excel
dc.publisher.none.fl_str_mv Instituto Peruano de Orientación Psicológica
publisher.none.fl_str_mv Instituto Peruano de Orientación Psicológica
dc.source.none.fl_str_mv Interacciones; Vol. 3, Num. 2 (2017): Mayo - Agosto; 59-65
Interacciones; Vol. 3, Num. 2 (2017): May - Agust; 59-65
Interacciones: Revistas de Avances en Psicología; Vol. 3, Num. 2 (2017): May - Agust; 59-65
2411-5940
2413-4465
reponame:Interacciones
instname:Instituto Peruano de Orientación Psicológica
instacron:IPOPS
instname_str Instituto Peruano de Orientación Psicológica
instacron_str IPOPS
institution IPOPS
reponame_str Interacciones
collection Interacciones
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1789167426189918208
score 13.959421
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).