Statistical indices from bifactor models
Descripción del Articulo
Many instruments are created with the primary purpose of scaling individuals on a single trait. However psychological traits are often complex and contain domain specific manifestations. As such, many instruments produce data that are consistent with both unidimensional and multidimensional structur...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2017 |
Institución: | Instituto Peruano de Orientación Psicológica |
Repositorio: | Interacciones |
Lenguaje: | español |
OAI Identifier: | oai:ojs3114.ejournals.host:article/33 |
Enlace del recurso: | https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33 |
Nivel de acceso: | acceso abierto |
Materia: | Confirmatory factorial analysis bifactor omega construct reliability explained common variance percentage of uncontaminated correlations |
id |
REVIPOPS_cad1d3b82ee28c189e082ab0e1fb13d1 |
---|---|
oai_identifier_str |
oai:ojs3114.ejournals.host:article/33 |
network_acronym_str |
REVIPOPS |
network_name_str |
Interacciones |
repository_id_str |
. |
spelling |
Statistical indices from bifactor modelsÍndices estadísticos de modelos bifactorDominguez-Lara, SergioRodriguez, AnthonyConfirmatory factorial analysisbifactoromegaconstruct reliabilityexplained common variancepercentage of uncontaminated correlationsMany instruments are created with the primary purpose of scaling individuals on a single trait. However psychological traits are often complex and contain domain specific manifestations. As such, many instruments produce data that are consistent with both unidimensional and multidimensional structures. Unfortunately, oftentimes, applied researchers make determinations about the final structure based solely on fit indices obtained from structural equation models. Given that fit indices generally favor the bifactor model over competing measurement models it is imperative that researchers make use of the available information the bifactor has to offer in order to compute informative indices including omega reliability coefficients, construct reliability, explained common variance, and percentage of uncontaminated correlations. Said indices provide unique information about the strength of both the general and specific factors in order to draw conclusions about dimensionality and overall scoring of scales (and subscales). Herein, we describe these indices and offer a new module which easily facilitates their computation.Muchos instrumentos se crean con el propósito principal de evaluar sujetos con relación a un solo rasgo. Sin embargo, los rasgos psicológicos son frecuentemente complejos y contienen manifestaciones de dominio específico. Como tal, muchos instrumentos brindan información que son consistentes tanto con las estructuras unidimensionales como las multidimensionales. Por desgracia, muchas veces, los investigadores aplicados hacen determinaciones sobre la estructura final basado únicamente en los índices de ajuste obtenidos a partir de modelos de ecuaciones estructurales. Dado que los índices de ajuste generalmente favorecen al modelo bifactor sobre los modelos de medición competidores, es imperativo que los investigadores hacen uso de la información disponible que los modelos bifactor tienen para ofrecer con el fin de calcular los índices informativos incluyendo coeficientes de confiabilidad omega, confiabilidad del constructo, varianza común explicada, y el porcentaje de correlaciones no contaminadas. Dichos índices proporcionan información acerca de la fuerza tanto de los factores generales como de los factores específicos con el fin de sacar conclusiones acerca de la dimensionalidad y la puntuación global de las escalas (y subescalas). En este documento, se describen estos índices y ofrecen un nuevo módulo que facilita su cálculo.Instituto Peruano de Orientación Psicológica2017-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/vnd.ms-excelhttps://www.ojs.revistainteracciones.com/index.php/rin/article/view/3310.24016/2017.v3n2.51Interacciones; Vol. 3, Num. 2 (2017): Mayo - Agosto; 59-65Interacciones; Vol. 3, Num. 2 (2017): May - Agust; 59-65Interacciones: Revistas de Avances en Psicología; Vol. 3, Num. 2 (2017): May - Agust; 59-652411-59402413-4465reponame:Interaccionesinstname:Instituto Peruano de Orientación Psicológicainstacron:IPOPSspahttps://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/68https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/69https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/214Copyright (c) 2017 Interaccioneshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs3114.ejournals.host:article/332023-11-16T20:19:01Z |
dc.title.none.fl_str_mv |
Statistical indices from bifactor models Índices estadísticos de modelos bifactor |
title |
Statistical indices from bifactor models |
spellingShingle |
Statistical indices from bifactor models Dominguez-Lara, Sergio Confirmatory factorial analysis bifactor omega construct reliability explained common variance percentage of uncontaminated correlations |
title_short |
Statistical indices from bifactor models |
title_full |
Statistical indices from bifactor models |
title_fullStr |
Statistical indices from bifactor models |
title_full_unstemmed |
Statistical indices from bifactor models |
title_sort |
Statistical indices from bifactor models |
dc.creator.none.fl_str_mv |
Dominguez-Lara, Sergio Rodriguez, Anthony |
author |
Dominguez-Lara, Sergio |
author_facet |
Dominguez-Lara, Sergio Rodriguez, Anthony |
author_role |
author |
author2 |
Rodriguez, Anthony |
author2_role |
author |
dc.subject.none.fl_str_mv |
Confirmatory factorial analysis bifactor omega construct reliability explained common variance percentage of uncontaminated correlations |
topic |
Confirmatory factorial analysis bifactor omega construct reliability explained common variance percentage of uncontaminated correlations |
description |
Many instruments are created with the primary purpose of scaling individuals on a single trait. However psychological traits are often complex and contain domain specific manifestations. As such, many instruments produce data that are consistent with both unidimensional and multidimensional structures. Unfortunately, oftentimes, applied researchers make determinations about the final structure based solely on fit indices obtained from structural equation models. Given that fit indices generally favor the bifactor model over competing measurement models it is imperative that researchers make use of the available information the bifactor has to offer in order to compute informative indices including omega reliability coefficients, construct reliability, explained common variance, and percentage of uncontaminated correlations. Said indices provide unique information about the strength of both the general and specific factors in order to draw conclusions about dimensionality and overall scoring of scales (and subscales). Herein, we describe these indices and offer a new module which easily facilitates their computation. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33 10.24016/2017.v3n2.51 |
url |
https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33 |
identifier_str_mv |
10.24016/2017.v3n2.51 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/68 https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/69 https://www.ojs.revistainteracciones.com/index.php/rin/article/view/33/214 |
dc.rights.none.fl_str_mv |
Copyright (c) 2017 Interacciones http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Interacciones http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html application/vnd.ms-excel |
dc.publisher.none.fl_str_mv |
Instituto Peruano de Orientación Psicológica |
publisher.none.fl_str_mv |
Instituto Peruano de Orientación Psicológica |
dc.source.none.fl_str_mv |
Interacciones; Vol. 3, Num. 2 (2017): Mayo - Agosto; 59-65 Interacciones; Vol. 3, Num. 2 (2017): May - Agust; 59-65 Interacciones: Revistas de Avances en Psicología; Vol. 3, Num. 2 (2017): May - Agust; 59-65 2411-5940 2413-4465 reponame:Interacciones instname:Instituto Peruano de Orientación Psicológica instacron:IPOPS |
instname_str |
Instituto Peruano de Orientación Psicológica |
instacron_str |
IPOPS |
institution |
IPOPS |
reponame_str |
Interacciones |
collection |
Interacciones |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1789167426189918208 |
score |
13.959421 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).