Inteligencia artificial y enfoques diagnósticos multimodales en enfermedad cardiovascular

Descripción del Articulo

Objective. Evaluate the impact and clinical applicability of artificial intelligence (AI) models in cardiovascular diagnosis, assessing their potential to improve diagnostic accuracy, operational efficiency, and reliability compared with conventional methods. Materials and Methods. A critical review...

Descripción completa

Detalles Bibliográficos
Autor: Ramos-Zaga, Fernando A.
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional Cardiovascular
Repositorio:Archivos peruanos de cardiología y cirugía cardiovascular
Lenguaje:español
inglés
OAI Identifier:oai:apcyccv.org.pe:article/532
Enlace del recurso:https://apcyccv.org.pe/index.php/apccc/article/view/532
Nivel de acceso:acceso abierto
Materia:Inteligencia Artificial
Aprendizaje Automático
Técnicas de Diagnóstico Cardiovascular
Medicina de Precisión
Artificial Intelligence
Machine Learning
Diagnostic Techniques, Cardiovascular
Precision Medicine
Descripción
Sumario:Objective. Evaluate the impact and clinical applicability of artificial intelligence (AI) models in cardiovascular diagnosis, assessing their potential to improve diagnostic accuracy, operational efficiency, and reliability compared with conventional methods. Materials and Methods. A critical review of the recent literature was conducted, encompassing retrospective studies, multicenter trials, and external validations that employed machine learning and deep learning algorithms applied to imaging modalities, electrocardiographic and phonocardiographic signals, as well as clinical and proteomic biomarkers. Results. Evidence indicates that in cardiac imaging, automated segmentation and ventricular dysfunction detection achieved accuracy metrics exceeding 90%, suggesting readiness for clinical integration. In cardiac signals, deep learning models demonstrated area under the ROC curve values of approximately 0.99 for predicting atrial fibrillation and ischemic heart disease, further supported by explainability techniques. Regarding biomarkers, ensemble models achieved diagnostic accuracies above 95%, and the integration of proteomic and clinical data substantially enhanced predictive performance. Nonetheless, decreased performance in external validations, limited generalizability to heterogeneous populations, and clinicians’ reluctance due to insufficient explainability remain major barriers. Conclusion. Artificial intelligence in cardiovascular diagnostics holds transformative potential by improving accuracy, reducing interobserver variability, and expanding access in resource-limited settings. However, its consolidation into routine practice requires robust multicenter validations, seamless interoperability with clinical workflows, and strengthened explainability, prerequisites for incorporation into clinical guidelines and precision medicine strategies.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).