Forecast accuracy of COVID-19 spread dynamics in Peru

Descripción del Articulo

 Objective: To analyze the forecast accuracy of Brown's exponential smoothing model to predict the spread of COVID-19 in Peru from March 6 to May 30, 2020. Materials and methods: A descriptive study based on a time series analysis conducted from March 6 to May 30, 2020 in Peru. The information...

Descripción completa

Detalles Bibliográficos
Autores: Córdova Sotomayor, Daniel Angel, Santa María Carlos, Flor Benigna
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad de San Martín de Porres
Repositorio:Horizonte médico
Lenguaje:español
OAI Identifier:oai:horizontemedico.usmp.edu.pe:article/1251
Enlace del recurso:https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/1251
Nivel de acceso:acceso abierto
Materia:Pronóstico
Infecciones por coronavirus
Coronavirus
Prognosis
Coronavirus infections
Descripción
Sumario: Objective: To analyze the forecast accuracy of Brown's exponential smoothing model to predict the spread of COVID-19 in Peru from March 6 to May 30, 2020. Materials and methods: A descriptive study based on a time series analysis conducted from March 6 to May 30, 2020 in Peru. The information on the number of positive cases of COVID-19 (155,671 people) was used. The prediction method was Brown's exponential smoothing model, which consists in carrying out two exponential smoothings from which the forecast is calculated: the time series values were used in the first smoothing, and the first attenuation series was used in the second one. Accuracy measures used in the research were: mean forecast error (MFE), mean squared error (MSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). The coefficient of determination (R2) was used to establish if the data fits the evaluated model. Results: MFE was 156.7, MSE was 506461.3, MAD was 450.6 and MAPE was 9.03 %. R2 accounted for 0.8078. Conclusions: Accuracy error or MAPE was 9.03 % and R2 was 0.8078, which indicates that the data fits by 80.78 % to the evaluated model.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).