PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*

Descripción del Articulo

In this article, we present a general framework to construct forecasts using simulation. This framework allows us to incorporate available data into a forecasting model in order to assess parameter uncertainty through a posterior distribution, which is then used to estimate a point forecast in the f...

Descripción completa

Detalles Bibliográficos
Autor: Muñoz Negrón, David F.
Formato: artículo
Fecha de Publicación:2009
Institución:Universidad ESAN
Repositorio:Revistas - Universidad ESAN
Lenguaje:inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/290
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/290
Nivel de acceso:acceso abierto
Materia:Forecasting
simulation output analysis
Bayesian estimation
quantile estimation
id REVESAN_7f9ffc8b7dd859451376e806fbdc2d2b
oai_identifier_str oai:ojs.pkp.sfu.ca:article/290
network_acronym_str REVESAN
network_name_str Revistas - Universidad ESAN
repository_id_str .
spelling PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA* Muñoz Negrón, David F.Forecastingsimulation output analysisBayesian estimationquantile estimationIn this article, we present a general framework to construct forecasts using simulation. This framework allows us to incorporate available data into a forecasting model in order to assess parameter uncertainty through a posterior distribution, which is then used to estimate a point forecast in the form of a conditional (given the data) expectation. The uncertainty on the point forecast is assessed through the estimation of a conditional variance and a prediction interval. We discuss how to construct asymptotic confidence intervals to assess the estimation error for the estimators obtained using simulation. We illustrate how this approach is consistent with Bayesian forecasting by presenting two examples, and experimental results that confirm our analytical results are discussed.Universidad ESAN2009-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://revistas.esan.edu.pe/index.php/jefas/article/view/290Journal of Economics, Finance and Administrative Science; Vol. 14 No. 26 (2009): January - June (Cuadernos de difusión); 7-26Journal of Economics, Finance and Administrative Science; Vol. 14 Núm. 26 (2009): January - June (Cuadernos de difusión); 7-262218-06482077-1886reponame:Revistas - Universidad ESANinstname:Universidad ESANinstacron:ESANenghttps://revistas.esan.edu.pe/index.php/jefas/article/view/290/171Copyright (c) 2021 Journal of Economics, Finance and Administrative Sciencehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/2902021-09-14T18:39:03Z
dc.title.none.fl_str_mv PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
title PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
spellingShingle PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
Muñoz Negrón, David F.
Forecasting
simulation output analysis
Bayesian estimation
quantile estimation
title_short PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
title_full PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
title_fullStr PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
title_full_unstemmed PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
title_sort PRONÓSTICOS BAYESIANOS USANDO SIMULACIÓN ESTOCÁSTICA*
dc.creator.none.fl_str_mv Muñoz Negrón, David F.
author Muñoz Negrón, David F.
author_facet Muñoz Negrón, David F.
author_role author
dc.subject.none.fl_str_mv Forecasting
simulation output analysis
Bayesian estimation
quantile estimation
topic Forecasting
simulation output analysis
Bayesian estimation
quantile estimation
description In this article, we present a general framework to construct forecasts using simulation. This framework allows us to incorporate available data into a forecasting model in order to assess parameter uncertainty through a posterior distribution, which is then used to estimate a point forecast in the form of a conditional (given the data) expectation. The uncertainty on the point forecast is assessed through the estimation of a conditional variance and a prediction interval. We discuss how to construct asymptotic confidence intervals to assess the estimation error for the estimators obtained using simulation. We illustrate how this approach is consistent with Bayesian forecasting by presenting two examples, and experimental results that confirm our analytical results are discussed.
publishDate 2009
dc.date.none.fl_str_mv 2009-06-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/290
url https://revistas.esan.edu.pe/index.php/jefas/article/view/290
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/290/171
dc.rights.none.fl_str_mv Copyright (c) 2021 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN
publisher.none.fl_str_mv Universidad ESAN
dc.source.none.fl_str_mv Journal of Economics, Finance and Administrative Science; Vol. 14 No. 26 (2009): January - June (Cuadernos de difusión); 7-26
Journal of Economics, Finance and Administrative Science; Vol. 14 Núm. 26 (2009): January - June (Cuadernos de difusión); 7-26
2218-0648
2077-1886
reponame:Revistas - Universidad ESAN
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str Revistas - Universidad ESAN
collection Revistas - Universidad ESAN
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1842439112009711616
score 12.87381
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).