Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru
Descripción del Articulo
Objective: To determine if the Tomographic Severity Score (TSS) of patients with COVID- 19 pneumonia at admission, as well as some laboratory tests or clinical features predict ICU admission in this group of patients. Material and methods: Case-control study, which included patients with a clinical...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Colegio Médico del Perú |
Repositorio: | Acta Médica Peruana |
Lenguaje: | español |
OAI Identifier: | oai:ojs.pkp.sfu.ca:article/2456 |
Enlace del recurso: | https://amp.cmp.org.pe/index.php/AMP/article/view/2456 |
Nivel de acceso: | acceso abierto |
Materia: | SARS-CoV-2 TSS Score COVID-19 Intensive Care Units |
id |
REVCMP_066aa037a257310f12c8b5a0d34b4700 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/2456 |
network_acronym_str |
REVCMP |
network_name_str |
Acta Médica Peruana |
repository_id_str |
. |
dc.title.none.fl_str_mv |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru Score Tomográfico de Severidad (TSS) como predictor de admisión a Unidad de Cuidados Intensivos (UCI) en pacientes con neumonía COVID-19 en una clínica de San Juan de Lurigancho Lima, Perú |
title |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru |
spellingShingle |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru Ravelo-Hernández, Jorge L. SARS-CoV-2 TSS Score COVID-19 Intensive Care Units |
title_short |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru |
title_full |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru |
title_fullStr |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru |
title_full_unstemmed |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru |
title_sort |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, Peru |
dc.creator.none.fl_str_mv |
Ravelo-Hernández, Jorge L. Aguirre-Quispe, Wilfor Quispe-Ayuque, Edwin Reyes-Rocha, Gabriela Hernández-Azuaje, Josefina J. |
author |
Ravelo-Hernández, Jorge L. |
author_facet |
Ravelo-Hernández, Jorge L. Aguirre-Quispe, Wilfor Quispe-Ayuque, Edwin Reyes-Rocha, Gabriela Hernández-Azuaje, Josefina J. |
author_role |
author |
author2 |
Aguirre-Quispe, Wilfor Quispe-Ayuque, Edwin Reyes-Rocha, Gabriela Hernández-Azuaje, Josefina J. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
SARS-CoV-2 TSS Score COVID-19 Intensive Care Units |
topic |
SARS-CoV-2 TSS Score COVID-19 Intensive Care Units |
description |
Objective: To determine if the Tomographic Severity Score (TSS) of patients with COVID- 19 pneumonia at admission, as well as some laboratory tests or clinical features predict ICU admission in this group of patients. Material and methods: Case-control study, which included patients with a clinical diagnosis of SARS-CoV2 virus infection, performed by reverse transcriptase polymerase chain reaction (RT-PCR), reactive serological test (IgM / IgG) and/or Computed Tomography of the chest (CTT) without contrast. Two radiologists (blind evaluators) described the tomographic findings. The data were taken from electronic medical records (EHR). The most important variables for the prediction of ICU admission were analyzed: TSS, age, BMI, obesity, ferritin, D-Dimer, O2 saturation, PO2, lymphopenia, C-reactive protein, and presence of comorbidities: Diabetes Mellitus, HTN. The prediction of admission to the ICU was performed using binary logistic regression for an adjusted OR, which compared 2 analysis models with a 95% CI and a p value <0.05; as statistically significant Results: 168 participants were included. The most frequent comorbidity was arterial hypertension, followed by Type 2 diabetes, the most frequent symptoms in our series were cough, malaise, fever and respiratory distress, there were no significant differences between the groups studied (admitted to ICU and not admitted to ICU). The mean age of the patients not admitted to the ICU was 44.89 ± 10.9 years and of those admitted to the ICU 43.81 ± 11 years (p: 0.669). The mean value of the TSS Score was 14 (SD 4.44) in ICU patients vs. 7.77 (SD 4.81) in Not admitted to ICU (p <0.001), the mean D-Dimer was 0.78 (SD 2.74) in Not admitted to ICU vs. 4.72 (SD 9.72) in ICU admitted (p <0.001). In addition, the prediction for ICU admission by binary logistic regression was shown in Model 2; than the following variables: TSS (OR: 1.24) (95% CI 1.08- 1.43) (p₌ 0.002), BMI (OR: 1.19) (95% CI 1.02-1.39) (p₌ 0.022), Age (OR: 0.94) (95% CI 0.89-0.99) (p₌ 0.047) and D-Dimer (OR: 1.14) (95% CI 1.04-1.26) (p₌ 0.05), were the variables with the best predictive value. Conclusions: The TSS Score was useful in the initial diagnostic evaluation of COVID-19 pneumonia, in conjunction with markers such as D-Dimer, BMI and age that can predict a poor result in the short term. A TSS Score ≥ 8 in patients with COVID 19 pneumonia at hospital admission can be considered a predictor of admission to the ICU in the patients studied. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://amp.cmp.org.pe/index.php/AMP/article/view/2456 10.35663/amp.2022.394.2456 |
url |
https://amp.cmp.org.pe/index.php/AMP/article/view/2456 |
identifier_str_mv |
10.35663/amp.2022.394.2456 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://amp.cmp.org.pe/index.php/AMP/article/view/2456/1486 |
dc.rights.none.fl_str_mv |
Copyright (c) 2022 ACTA MEDICA PERUANA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 ACTA MEDICA PERUANA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Colegio Médico del Perú |
publisher.none.fl_str_mv |
Colegio Médico del Perú |
dc.source.none.fl_str_mv |
ACTA MEDICA PERUANA; Vol 39 No 4 (2022): October - December ACTA MEDICA PERUANA; Vol. 39 Núm. 4 (2022): Octubre - Diciembre 1728-5917 1018-8800 reponame:Acta Médica Peruana instname:Colegio Médico del Perú instacron:CMP |
instname_str |
Colegio Médico del Perú |
instacron_str |
CMP |
institution |
CMP |
reponame_str |
Acta Médica Peruana |
collection |
Acta Médica Peruana |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1816075112045084672 |
spelling |
Severity Tomographic Score (TSS) as a predictor of admission to Intensive Care Unit (ICU) in patients with COVID-19 pneumonia in San Juan de Lurigancho Lima, PeruScore Tomográfico de Severidad (TSS) como predictor de admisión a Unidad de Cuidados Intensivos (UCI) en pacientes con neumonía COVID-19 en una clínica de San Juan de Lurigancho Lima, PerúRavelo-Hernández, Jorge L.Aguirre-Quispe, WilforQuispe-Ayuque, EdwinReyes-Rocha, Gabriela Hernández-Azuaje, Josefina J.SARS-CoV-2TSS ScoreCOVID-19Intensive Care UnitsObjective: To determine if the Tomographic Severity Score (TSS) of patients with COVID- 19 pneumonia at admission, as well as some laboratory tests or clinical features predict ICU admission in this group of patients. Material and methods: Case-control study, which included patients with a clinical diagnosis of SARS-CoV2 virus infection, performed by reverse transcriptase polymerase chain reaction (RT-PCR), reactive serological test (IgM / IgG) and/or Computed Tomography of the chest (CTT) without contrast. Two radiologists (blind evaluators) described the tomographic findings. The data were taken from electronic medical records (EHR). The most important variables for the prediction of ICU admission were analyzed: TSS, age, BMI, obesity, ferritin, D-Dimer, O2 saturation, PO2, lymphopenia, C-reactive protein, and presence of comorbidities: Diabetes Mellitus, HTN. The prediction of admission to the ICU was performed using binary logistic regression for an adjusted OR, which compared 2 analysis models with a 95% CI and a p value <0.05; as statistically significant Results: 168 participants were included. The most frequent comorbidity was arterial hypertension, followed by Type 2 diabetes, the most frequent symptoms in our series were cough, malaise, fever and respiratory distress, there were no significant differences between the groups studied (admitted to ICU and not admitted to ICU). The mean age of the patients not admitted to the ICU was 44.89 ± 10.9 years and of those admitted to the ICU 43.81 ± 11 years (p: 0.669). The mean value of the TSS Score was 14 (SD 4.44) in ICU patients vs. 7.77 (SD 4.81) in Not admitted to ICU (p <0.001), the mean D-Dimer was 0.78 (SD 2.74) in Not admitted to ICU vs. 4.72 (SD 9.72) in ICU admitted (p <0.001). In addition, the prediction for ICU admission by binary logistic regression was shown in Model 2; than the following variables: TSS (OR: 1.24) (95% CI 1.08- 1.43) (p₌ 0.002), BMI (OR: 1.19) (95% CI 1.02-1.39) (p₌ 0.022), Age (OR: 0.94) (95% CI 0.89-0.99) (p₌ 0.047) and D-Dimer (OR: 1.14) (95% CI 1.04-1.26) (p₌ 0.05), were the variables with the best predictive value. Conclusions: The TSS Score was useful in the initial diagnostic evaluation of COVID-19 pneumonia, in conjunction with markers such as D-Dimer, BMI and age that can predict a poor result in the short term. A TSS Score ≥ 8 in patients with COVID 19 pneumonia at hospital admission can be considered a predictor of admission to the ICU in the patients studied.Objetivo: Determinar si el Score Tomográfico de Severidad (TSS) de pacientes con neumonía COVID-19 a su ingreso, así como algunas pruebas de laboratorio o rasgos clínicos predicen el ingreso a UCI en este grupo de pacientes. Material y métodos: Estudio de casos y controles, que incluyó pacientes con diagnóstico clínico de Infección por virus SARS-CoV2, realizado mediante reacción en cadena de la polimerasa con transcriptasa inversa (RT-PCR), prueba serológica reactiva (IgM/IgG) y/o Tomografía Computarizada de tórax (TCT) sin contraste. Dos radiólogos (evaluadores ciegos) describieron los hallazgos tomográficos. Los datos fueron tomados de historias clínicas electrónicas (HCE). Se analizó las variables más importantes de predicción de ingreso a UCI: TSS, edad, IMC, obesidad, ferritina, Dímero D, saturación de O2, PO2, linfopenia, proteína C reactiva, y presencia de comorbilidades: Diabetes mellitus, HTA. La predicción de ingreso a UCI se realizó mediante regresión logística binaria para un OR ajustado, que comparaba 2 modelos de análisis con un IC 95 % y un p valor <0,05; como estadísticamente significativo. Resultados: Se incluyeron 168 participantes. La comorbilidad más frecuente fue la hipertensión arterial, seguido por diabetes tipo 2; los síntomas más frecuentes en nuestra serie fueron tos, malestar general, fiebre y dificultad respiratoria, no hubo diferencias significativas entre los grupos estudiados (Ingresados a UCI y No ingresados a UCI). La edad media de los pacientes No ingresados a UCI fue 44.89 ± 10.9 años y de los ingresados a UCI 43.81 ± 11 años (p: 0.669). La media del valor de Score TSS fue 14(SD 4.44) en ingresados UCI vs. 7.77(SD 4.81) en no ingresados a UCI (p<0.001), La media del Dímero D fue 0.78 (SD 2.74) en no ingresados a UCI vs. 4.72(SD 9.72) en ingresados a UCI (p<0.001). Además, la predicción para el ingreso a UCI por regresión logística binaria mostró en el modelo 2, que las siguientes variables: TSS(OR: 1.24) (IC 95 % 1.08-1.43) (p₌ 0.002), IMC (OR: 1.19) (IC 95 % 1.02-1.39)(p₌ 0.022) ,Edad (OR: 0.94)(IC 95 % 0.89-0.99) (p₌ 0.047) y Dímero D (OR: 1.14) (IC 95 % 1.04-1.26)(p₌ 0.05), fueron las variables con mejor valor predictor. Conclusiones: El Score TSS fue útil en la evaluación diagnóstica inicial de neumonía COVID-19, en conjunto a marcadores como Dímero D, IMC y edad que pueden predecir un mal resultado a corto plazo. Un Score TSS ≥ 8 en pacientes con neumonía COVID 19 en su admisión hospitalaria puede ser considerado predictor de admisión a UCI, en los pacientes estudiados.Colegio Médico del Perú2022-12-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://amp.cmp.org.pe/index.php/AMP/article/view/245610.35663/amp.2022.394.2456ACTA MEDICA PERUANA; Vol 39 No 4 (2022): October - DecemberACTA MEDICA PERUANA; Vol. 39 Núm. 4 (2022): Octubre - Diciembre1728-59171018-8800reponame:Acta Médica Peruanainstname:Colegio Médico del Perúinstacron:CMPspahttps://amp.cmp.org.pe/index.php/AMP/article/view/2456/1486Copyright (c) 2022 ACTA MEDICA PERUANAinfo:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/24562024-01-09T04:19:57Z |
score |
13.882472 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).