Unsupervised Deep-Learning Method for Haze Removal Without Paired Images

Descripción del Articulo

In this study, we address a fundamental and still relatively less explored aspect in the field of neural networks for image dehazing: the unsupervised dehazing of an image. By conceiving a hazy image as the superposition of several “simpler“ layers, such as a haze-free image layer, a transmission ma...

Descripción completa

Detalles Bibliográficos
Autor: Maldonado Quispe, Percy
Formato: tesis de maestría
Fecha de Publicación:2024
Institución:Superintendencia Nacional de Educación Superior Universitaria
Repositorio:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
Lenguaje:inglés
OAI Identifier:oai:renati.sunedu.gob.pe:renati/9413
Enlace del recurso:https://renati.sunedu.gob.pe/handle/sunedu/3694692
https://hdl.handle.net/20.500.12733/19338
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático no supervisado
Procesamiento de imágenes digitales
Neblina
https://purl.org/pe-repo/ocde/ford#1.02.01
id RENATI_8e34d734a6d0bdd3d3ea8587ff91291d
oai_identifier_str oai:renati.sunedu.gob.pe:renati/9413
network_acronym_str RENATI
network_name_str Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
repository_id_str
dc.title.es_PE.fl_str_mv Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
dc.title.alternative.es_PE.fl_str_mv Método Não Supervisionado de Aprendizado de Máquina Profundo para Remoção de Neblina Sem Imagens Emparelhadas
Método de aprendizaje profundo no supervisado para eliminar la neblina sin imágenes pareadas
title Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
spellingShingle Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
Maldonado Quispe, Percy
Aprendizaje automático no supervisado
Procesamiento de imágenes digitales
Neblina
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
title_full Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
title_fullStr Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
title_full_unstemmed Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
title_sort Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
author Maldonado Quispe, Percy
author_facet Maldonado Quispe, Percy
author_role author
dc.contributor.advisor.fl_str_mv Pedrini, Hélio
dc.contributor.author.fl_str_mv Maldonado Quispe, Percy
dc.subject.es_PE.fl_str_mv Aprendizaje automático no supervisado
Procesamiento de imágenes digitales
Neblina
topic Aprendizaje automático no supervisado
Procesamiento de imágenes digitales
Neblina
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description In this study, we address a fundamental and still relatively less explored aspect in the field of neural networks for image dehazing: the unsupervised dehazing of an image. By conceiving a hazy image as the superposition of several “simpler“ layers, such as a haze-free image layer, a transmission map layer, and an atmospheric light layer, inspired by the atmospheric scattering model, we propose an approach based on the concept of layer disentangling. Our method, called XYZ, represents a substantial improvement in image quality metrics, such as SSIM and PSNR as well as BRISQUE, PIQE and NIQE. This advancement is achieved through the strategic combination of the XHOT, YOLY and ZID methods, capitalizing on the individual strengths of each. A distinctive and valuable aspect of the XYZ approach is its unsupervised nature, which implies that it does not rely on data sets containing pairs of clear and hazy images for training. This contrasts with the traditional deep training paradigm, marking an innovation in the field of dehazing. Furthermore, we highlight two fundamental benefits of the proposed XYZ approach. Firstly, being unsupervised, it frees the process from the need to use exhaustive datasets that include clear and hazy images as a fundamental reference. Secondly, we approach the haze issue from a multi-layered perspective, recognizing and unraveling the complexities inherent to this atmospheric phenomenon. This layered approach allows for a more accurate and detailed representation of the scene, thereby improving the quality of haze-free images. Experimental results obtained for the RESIDE dataset are compared with other methods from the literature.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-31T19:54:34Z
dc.date.available.none.fl_str_mv 2024-07-31T19:54:34Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://renati.sunedu.gob.pe/handle/sunedu/3694692
https://hdl.handle.net/20.500.12733/19338
url https://renati.sunedu.gob.pe/handle/sunedu/3694692
https://hdl.handle.net/20.500.12733/19338
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidade Estadual de Campinas
dc.publisher.country.es_PE.fl_str_mv BR
dc.source.es_PE.fl_str_mv Superintendencia Nacional de Educación Superior Universitaria - SUNEDU
dc.source.none.fl_str_mv reponame:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
instname:Superintendencia Nacional de Educación Superior Universitaria
instacron:SUNEDU
instname_str Superintendencia Nacional de Educación Superior Universitaria
instacron_str SUNEDU
institution SUNEDU
reponame_str Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
collection Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
dc.source.uri.es_PE.fl_str_mv Registro Nacional de Trabajos de Investigación - RENATI
bitstream.url.fl_str_mv https://renati.sunedu.gob.pe/bitstream/renati/9413/1/MaldonadoQuispeP.pdf
https://renati.sunedu.gob.pe/bitstream/renati/9413/2/Autorizacion.pdf
https://renati.sunedu.gob.pe/bitstream/renati/9413/3/license.txt
bitstream.checksum.fl_str_mv 72f772af0b094c7639215bfbf534ce5f
f782e534703cf77c572a3e99530fceea
b39fb1e1cb23db8e93fd74de238cfcd9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Registro Nacional de Trabajos de Investigación
repository.mail.fl_str_mv renati@sunedu.gob.pe
_version_ 1816177350218350592
spelling Pedrini, HélioMaldonado Quispe, Percy2024-07-31T19:54:34Z2024-07-31T19:54:34Z2024https://renati.sunedu.gob.pe/handle/sunedu/3694692https://hdl.handle.net/20.500.12733/19338In this study, we address a fundamental and still relatively less explored aspect in the field of neural networks for image dehazing: the unsupervised dehazing of an image. By conceiving a hazy image as the superposition of several “simpler“ layers, such as a haze-free image layer, a transmission map layer, and an atmospheric light layer, inspired by the atmospheric scattering model, we propose an approach based on the concept of layer disentangling. Our method, called XYZ, represents a substantial improvement in image quality metrics, such as SSIM and PSNR as well as BRISQUE, PIQE and NIQE. This advancement is achieved through the strategic combination of the XHOT, YOLY and ZID methods, capitalizing on the individual strengths of each. A distinctive and valuable aspect of the XYZ approach is its unsupervised nature, which implies that it does not rely on data sets containing pairs of clear and hazy images for training. This contrasts with the traditional deep training paradigm, marking an innovation in the field of dehazing. Furthermore, we highlight two fundamental benefits of the proposed XYZ approach. Firstly, being unsupervised, it frees the process from the need to use exhaustive datasets that include clear and hazy images as a fundamental reference. Secondly, we approach the haze issue from a multi-layered perspective, recognizing and unraveling the complexities inherent to this atmospheric phenomenon. This layered approach allows for a more accurate and detailed representation of the scene, thereby improving the quality of haze-free images. Experimental results obtained for the RESIDE dataset are compared with other methods from the literature.En este estudio, abordamos un paradigma de aprendizaje fundamental y aun relativamente poco explorado en el campo de las redes neuronales: eliminación de neblina no supervisado de una imagen. Al concebir una imagen con neblina como la superposición de varias capas “más simples” inspiradas en el modelo de dispersión atmosférica, proponemos un enfoque basado en el concepto de desenmarañamiento de capas. Nuestro método, llamado XYZ, representa una mejora sustancial en las métricas de calidad de imagen, como SSIM y PSNR, así como BRISQUE, PIQE y NIQE. Este avance se logra mediante la combinación estratégica de los métodos XHOT, YOLY y ZID, aprovechando las fortalezas individuales de cada uno. Un aspecto distintivo y valioso del enfoque XYZ es su naturaleza no supervisada, lo que implica que no se basa en conjuntos de datos que contengan pares de imágenes claras y con neblina para el entrenamiento. Destacamos dos beneficios fundamentales del enfoque XYZ propuesto. En primer lugar, al no estar supervisado, libera la necesidad de utilizar conjuntos de datos que incluyan imágenes claras y con neblina como referencia. En segundo lugar, abordamos el tema de la neblina desde una perspectiva de múltiples capas, reconociendo y desentrañando las complejidades inherentes a este fenómeno atmosférico. Este enfoque en capas permite una representación más precisa y detallada de la escena, mejorando así la calidad de las imágenes sin neblina.Disertación de maestríaapplication/pdfengUniversidade Estadual de CampinasBRinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esSuperintendencia Nacional de Educación Superior Universitaria - SUNEDURegistro Nacional de Trabajos de Investigación - RENATIreponame:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATIinstname:Superintendencia Nacional de Educación Superior Universitariainstacron:SUNEDUAprendizaje automático no supervisadoProcesamiento de imágenes digitalesNeblinahttps://purl.org/pe-repo/ocde/ford#1.02.01Unsupervised Deep-Learning Method for Haze Removal Without Paired ImagesMétodo Não Supervisionado de Aprendizado de Máquina Profundo para Remoção de Neblina Sem Imagens EmparelhadasMétodo de aprendizaje profundo no supervisado para eliminar la neblina sin imágenes pareadasinfo:eu-repo/semantics/masterThesisUniversidade Estadual de Campinas. Instituto de ComputaçãoCiencia de la ComputaciónMaestro en Ciencia de la Computaciónhttp://purl.org/pe-repo/renati/level#maestrohttps://orcid.org/0000-0003-0125-630X73388027Pedrini, HélioBeltrán Castañón, César ArmandoDe Almeida Maia, Helenahttp://purl.org/pe-repo/renati/type#trabajoDeInvestigacionORIGINALMaldonadoQuispeP.pdfMaldonadoQuispeP.pdfDisertaciónapplication/pdf1379313https://renati.sunedu.gob.pe/bitstream/renati/9413/1/MaldonadoQuispeP.pdf72f772af0b094c7639215bfbf534ce5fMD51Autorizacion.pdfAutorizacion.pdfAutorización del registroapplication/pdf602615https://renati.sunedu.gob.pe/bitstream/renati/9413/2/Autorizacion.pdff782e534703cf77c572a3e99530fceeaMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8956https://renati.sunedu.gob.pe/bitstream/renati/9413/3/license.txtb39fb1e1cb23db8e93fd74de238cfcd9MD53renati/9413oai:renati.sunedu.gob.pe:renati/94132024-07-31 14:58:25.271Registro Nacional de Trabajos de Investigaciónrenati@sunedu.gob.peTGFzIHVuaXZlcnNpZGFkZXMsIGluc3RpdHVjaW9uZXMgeSBlc2N1ZWxhcyBkZSBlZHVjYWNpw7NuIHN1cGVyaW9yIHRpZW5lbiBjb21vIG9ibGlnYWNpw7NuIHJlZ2lzdHJhciB5IGRlcG9zaXRhciB0b2RvcyBsb3MgdHJhYmFqb3MgY29uZHVjZW50ZXMgYSBncmFkb3MgeSB0w610dWxvcywgaW5jbHV5ZW5kbyBsb3MgbWV0YWRhdG9zIGVuIHN1cyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzIHByZWNpc2FuZG8gc2kgc29uIGRlIGFjY2VzbyBhYmllcnRvLCByZXN0cmluZ2lkbywgY29uIHVuIHBlcmlvZG8gZGUgZW1iYXJnbyBvIGNvbiBsYSBjb25kaWNpw7NuIGNlcnJhZGEsIGNvbnRhbmRvIGNvbiBsYSBhdXRvcml6YWNpw7NuIHByZXZpYSB5IHBvciBlc2NyaXRvIGRlIGxvcyBhdXRvcmVzIGRlIGxvcyB0cmFiYWpvcyBwYXJhIHN1IHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIHDDumJsaWNhIGNvbiBlbCBmaW4gZGUgZXZpdGFyIGN1YWxxdWllciBhZmVjdGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBjb25mb3JtZSBlbCBtYXJjbyBub3JtYXRpdm8gdmlnZW50ZSAoUmVnbGFtZW50byBSRU5BVEksIGFydMOtY3VsbyAxMi4yKS4gCgpMYXMgcGVyc29uYXMgbmF0dXJhbGVzIHF1ZSBzb2xpY2l0YW4gZWwgcmVjb25vY2ltaWVudG8gZGUgdW4gZ3JhZG8geS9vIHTDrXR1bG8gb3RvcmdhZG8gZW4gZWwgZXh0cmFuamVybyBwdWVkZW4gcmVxdWVyaXIgZWwgYWxvamFtaWVudG8gZGVsIHRyYWJham8gcG9yIGVsIGN1YWwgb2J0dXZpZXJvbiBkaWNobyBncmFkbyBvIHTDrXR1bG8gZW4gZWwgUmVjb2xlY3RvciBEaWdpdGFsIFJFTkFUSSwgZW4gY2FzbyBzZSBoYXlhIHV0aWxpemFkbyBlc3RhIG1vZGFsaWRhZCBwYXJhIGxhIG9idGVuY2nDs24gZGVsIGdyYWRvIG8gdMOtdHVsbyByZXNwZWN0aXZvIChSZWdsYW1lbnRvIFJFTkFUSSwgYXJ0w61jdWxvIDE5LjEpLgo=
score 13.968331
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).