Unsupervised Deep-Learning Method for Haze Removal Without Paired Images
Descripción del Articulo
In this study, we address a fundamental and still relatively less explored aspect in the field of neural networks for image dehazing: the unsupervised dehazing of an image. By conceiving a hazy image as the superposition of several “simpler“ layers, such as a haze-free image layer, a transmission ma...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2024 |
| Institución: | Superintendencia Nacional de Educación Superior Universitaria |
| Repositorio: | Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI |
| Lenguaje: | inglés |
| OAI Identifier: | oai:renati.sunedu.gob.pe:renati/9413 |
| Enlace del recurso: | https://renati.sunedu.gob.pe/handle/sunedu/3694692 https://hdl.handle.net/20.500.12733/19338 |
| Nivel de acceso: | acceso abierto |
| Materia: | Aprendizaje automático no supervisado Procesamiento de imágenes digitales Neblina https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
RENATI_8e34d734a6d0bdd3d3ea8587ff91291d |
|---|---|
| oai_identifier_str |
oai:renati.sunedu.gob.pe:renati/9413 |
| network_acronym_str |
RENATI |
| network_name_str |
Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI |
| repository_id_str |
|
| dc.title.es_PE.fl_str_mv |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images |
| dc.title.alternative.es_PE.fl_str_mv |
Método Não Supervisionado de Aprendizado de Máquina Profundo para Remoção de Neblina Sem Imagens Emparelhadas Método de aprendizaje profundo no supervisado para eliminar la neblina sin imágenes pareadas |
| title |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images |
| spellingShingle |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images Maldonado Quispe, Percy Aprendizaje automático no supervisado Procesamiento de imágenes digitales Neblina https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images |
| title_full |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images |
| title_fullStr |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images |
| title_full_unstemmed |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images |
| title_sort |
Unsupervised Deep-Learning Method for Haze Removal Without Paired Images |
| author |
Maldonado Quispe, Percy |
| author_facet |
Maldonado Quispe, Percy |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Pedrini, Hélio |
| dc.contributor.author.fl_str_mv |
Maldonado Quispe, Percy |
| dc.subject.es_PE.fl_str_mv |
Aprendizaje automático no supervisado Procesamiento de imágenes digitales Neblina |
| topic |
Aprendizaje automático no supervisado Procesamiento de imágenes digitales Neblina https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
In this study, we address a fundamental and still relatively less explored aspect in the field of neural networks for image dehazing: the unsupervised dehazing of an image. By conceiving a hazy image as the superposition of several “simpler“ layers, such as a haze-free image layer, a transmission map layer, and an atmospheric light layer, inspired by the atmospheric scattering model, we propose an approach based on the concept of layer disentangling. Our method, called XYZ, represents a substantial improvement in image quality metrics, such as SSIM and PSNR as well as BRISQUE, PIQE and NIQE. This advancement is achieved through the strategic combination of the XHOT, YOLY and ZID methods, capitalizing on the individual strengths of each. A distinctive and valuable aspect of the XYZ approach is its unsupervised nature, which implies that it does not rely on data sets containing pairs of clear and hazy images for training. This contrasts with the traditional deep training paradigm, marking an innovation in the field of dehazing. Furthermore, we highlight two fundamental benefits of the proposed XYZ approach. Firstly, being unsupervised, it frees the process from the need to use exhaustive datasets that include clear and hazy images as a fundamental reference. Secondly, we approach the haze issue from a multi-layered perspective, recognizing and unraveling the complexities inherent to this atmospheric phenomenon. This layered approach allows for a more accurate and detailed representation of the scene, thereby improving the quality of haze-free images. Experimental results obtained for the RESIDE dataset are compared with other methods from the literature. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-07-31T19:54:34Z |
| dc.date.available.none.fl_str_mv |
2024-07-31T19:54:34Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
https://renati.sunedu.gob.pe/handle/sunedu/3694692 https://hdl.handle.net/20.500.12733/19338 |
| url |
https://renati.sunedu.gob.pe/handle/sunedu/3694692 https://hdl.handle.net/20.500.12733/19338 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidade Estadual de Campinas |
| dc.publisher.country.es_PE.fl_str_mv |
BR |
| dc.source.es_PE.fl_str_mv |
Superintendencia Nacional de Educación Superior Universitaria - SUNEDU |
| dc.source.none.fl_str_mv |
reponame:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI instname:Superintendencia Nacional de Educación Superior Universitaria instacron:SUNEDU |
| instname_str |
Superintendencia Nacional de Educación Superior Universitaria |
| instacron_str |
SUNEDU |
| institution |
SUNEDU |
| reponame_str |
Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI |
| collection |
Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI |
| dc.source.uri.es_PE.fl_str_mv |
Registro Nacional de Trabajos de Investigación - RENATI |
| bitstream.url.fl_str_mv |
https://renati.sunedu.gob.pe/bitstream/renati/9413/1/MaldonadoQuispeP.pdf https://renati.sunedu.gob.pe/bitstream/renati/9413/2/Autorizacion.pdf https://renati.sunedu.gob.pe/bitstream/renati/9413/3/license.txt |
| bitstream.checksum.fl_str_mv |
72f772af0b094c7639215bfbf534ce5f f782e534703cf77c572a3e99530fceea b39fb1e1cb23db8e93fd74de238cfcd9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Registro Nacional de Trabajos de Investigación |
| repository.mail.fl_str_mv |
renati@sunedu.gob.pe |
| _version_ |
1816177350218350592 |
| spelling |
Pedrini, HélioMaldonado Quispe, Percy2024-07-31T19:54:34Z2024-07-31T19:54:34Z2024https://renati.sunedu.gob.pe/handle/sunedu/3694692https://hdl.handle.net/20.500.12733/19338In this study, we address a fundamental and still relatively less explored aspect in the field of neural networks for image dehazing: the unsupervised dehazing of an image. By conceiving a hazy image as the superposition of several “simpler“ layers, such as a haze-free image layer, a transmission map layer, and an atmospheric light layer, inspired by the atmospheric scattering model, we propose an approach based on the concept of layer disentangling. Our method, called XYZ, represents a substantial improvement in image quality metrics, such as SSIM and PSNR as well as BRISQUE, PIQE and NIQE. This advancement is achieved through the strategic combination of the XHOT, YOLY and ZID methods, capitalizing on the individual strengths of each. A distinctive and valuable aspect of the XYZ approach is its unsupervised nature, which implies that it does not rely on data sets containing pairs of clear and hazy images for training. This contrasts with the traditional deep training paradigm, marking an innovation in the field of dehazing. Furthermore, we highlight two fundamental benefits of the proposed XYZ approach. Firstly, being unsupervised, it frees the process from the need to use exhaustive datasets that include clear and hazy images as a fundamental reference. Secondly, we approach the haze issue from a multi-layered perspective, recognizing and unraveling the complexities inherent to this atmospheric phenomenon. This layered approach allows for a more accurate and detailed representation of the scene, thereby improving the quality of haze-free images. Experimental results obtained for the RESIDE dataset are compared with other methods from the literature.En este estudio, abordamos un paradigma de aprendizaje fundamental y aun relativamente poco explorado en el campo de las redes neuronales: eliminación de neblina no supervisado de una imagen. Al concebir una imagen con neblina como la superposición de varias capas “más simples” inspiradas en el modelo de dispersión atmosférica, proponemos un enfoque basado en el concepto de desenmarañamiento de capas. Nuestro método, llamado XYZ, representa una mejora sustancial en las métricas de calidad de imagen, como SSIM y PSNR, así como BRISQUE, PIQE y NIQE. Este avance se logra mediante la combinación estratégica de los métodos XHOT, YOLY y ZID, aprovechando las fortalezas individuales de cada uno. Un aspecto distintivo y valioso del enfoque XYZ es su naturaleza no supervisada, lo que implica que no se basa en conjuntos de datos que contengan pares de imágenes claras y con neblina para el entrenamiento. Destacamos dos beneficios fundamentales del enfoque XYZ propuesto. En primer lugar, al no estar supervisado, libera la necesidad de utilizar conjuntos de datos que incluyan imágenes claras y con neblina como referencia. En segundo lugar, abordamos el tema de la neblina desde una perspectiva de múltiples capas, reconociendo y desentrañando las complejidades inherentes a este fenómeno atmosférico. Este enfoque en capas permite una representación más precisa y detallada de la escena, mejorando así la calidad de las imágenes sin neblina.Disertación de maestríaapplication/pdfengUniversidade Estadual de CampinasBRinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esSuperintendencia Nacional de Educación Superior Universitaria - SUNEDURegistro Nacional de Trabajos de Investigación - RENATIreponame:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATIinstname:Superintendencia Nacional de Educación Superior Universitariainstacron:SUNEDUAprendizaje automático no supervisadoProcesamiento de imágenes digitalesNeblinahttps://purl.org/pe-repo/ocde/ford#1.02.01Unsupervised Deep-Learning Method for Haze Removal Without Paired ImagesMétodo Não Supervisionado de Aprendizado de Máquina Profundo para Remoção de Neblina Sem Imagens EmparelhadasMétodo de aprendizaje profundo no supervisado para eliminar la neblina sin imágenes pareadasinfo:eu-repo/semantics/masterThesisUniversidade Estadual de Campinas. Instituto de ComputaçãoCiencia de la ComputaciónMaestro en Ciencia de la Computaciónhttp://purl.org/pe-repo/renati/level#maestrohttps://orcid.org/0000-0003-0125-630X73388027Pedrini, HélioBeltrán Castañón, César ArmandoDe Almeida Maia, Helenahttp://purl.org/pe-repo/renati/type#trabajoDeInvestigacionORIGINALMaldonadoQuispeP.pdfMaldonadoQuispeP.pdfDisertaciónapplication/pdf1379313https://renati.sunedu.gob.pe/bitstream/renati/9413/1/MaldonadoQuispeP.pdf72f772af0b094c7639215bfbf534ce5fMD51Autorizacion.pdfAutorizacion.pdfAutorización del registroapplication/pdf602615https://renati.sunedu.gob.pe/bitstream/renati/9413/2/Autorizacion.pdff782e534703cf77c572a3e99530fceeaMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8956https://renati.sunedu.gob.pe/bitstream/renati/9413/3/license.txtb39fb1e1cb23db8e93fd74de238cfcd9MD53renati/9413oai:renati.sunedu.gob.pe:renati/94132024-07-31 14:58:25.271Registro Nacional de Trabajos de Investigaciónrenati@sunedu.gob.peTGFzIHVuaXZlcnNpZGFkZXMsIGluc3RpdHVjaW9uZXMgeSBlc2N1ZWxhcyBkZSBlZHVjYWNpw7NuIHN1cGVyaW9yIHRpZW5lbiBjb21vIG9ibGlnYWNpw7NuIHJlZ2lzdHJhciB5IGRlcG9zaXRhciB0b2RvcyBsb3MgdHJhYmFqb3MgY29uZHVjZW50ZXMgYSBncmFkb3MgeSB0w610dWxvcywgaW5jbHV5ZW5kbyBsb3MgbWV0YWRhdG9zIGVuIHN1cyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzIHByZWNpc2FuZG8gc2kgc29uIGRlIGFjY2VzbyBhYmllcnRvLCByZXN0cmluZ2lkbywgY29uIHVuIHBlcmlvZG8gZGUgZW1iYXJnbyBvIGNvbiBsYSBjb25kaWNpw7NuIGNlcnJhZGEsIGNvbnRhbmRvIGNvbiBsYSBhdXRvcml6YWNpw7NuIHByZXZpYSB5IHBvciBlc2NyaXRvIGRlIGxvcyBhdXRvcmVzIGRlIGxvcyB0cmFiYWpvcyBwYXJhIHN1IHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIHDDumJsaWNhIGNvbiBlbCBmaW4gZGUgZXZpdGFyIGN1YWxxdWllciBhZmVjdGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBjb25mb3JtZSBlbCBtYXJjbyBub3JtYXRpdm8gdmlnZW50ZSAoUmVnbGFtZW50byBSRU5BVEksIGFydMOtY3VsbyAxMi4yKS4gCgpMYXMgcGVyc29uYXMgbmF0dXJhbGVzIHF1ZSBzb2xpY2l0YW4gZWwgcmVjb25vY2ltaWVudG8gZGUgdW4gZ3JhZG8geS9vIHTDrXR1bG8gb3RvcmdhZG8gZW4gZWwgZXh0cmFuamVybyBwdWVkZW4gcmVxdWVyaXIgZWwgYWxvamFtaWVudG8gZGVsIHRyYWJham8gcG9yIGVsIGN1YWwgb2J0dXZpZXJvbiBkaWNobyBncmFkbyBvIHTDrXR1bG8gZW4gZWwgUmVjb2xlY3RvciBEaWdpdGFsIFJFTkFUSSwgZW4gY2FzbyBzZSBoYXlhIHV0aWxpemFkbyBlc3RhIG1vZGFsaWRhZCBwYXJhIGxhIG9idGVuY2nDs24gZGVsIGdyYWRvIG8gdMOtdHVsbyByZXNwZWN0aXZvIChSZWdsYW1lbnRvIFJFTkFUSSwgYXJ0w61jdWxvIDE5LjEpLgo= |
| score |
13.968331 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).