Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems

Descripción del Articulo

En esta tesis se aplican por primera vez métodos basados en modelos sin discretización espacial para detectar y localizar fugas en una planta piloto de transporte de fluidos. Basado en un modelo matemático que describe la dinámica de fluidos dentro de la tubería de agua mediante dos ecuaciones difer...

Descripción completa

Detalles Bibliográficos
Autor: Russmann, Julius Paul
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/26355
Enlace del recurso:http://hdl.handle.net/20.500.12404/26355
Nivel de acceso:acceso abierto
Materia:Tuberías--Dinámica de fluidos
Algoritmos
Control automático--Diseño y construcción
https://purl.org/pe-repo/ocde/ford#2.02.03
id PUCP_fe3a57959f32f1e1266d02c4a443d479
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/26355
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
title Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
spellingShingle Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
Russmann, Julius Paul
Tuberías--Dinámica de fluidos
Algoritmos
Control automático--Diseño y construcción
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
title_full Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
title_fullStr Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
title_full_unstemmed Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
title_sort Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems
author Russmann, Julius Paul
author_facet Russmann, Julius Paul
author_role author
dc.contributor.advisor.fl_str_mv Perez Zuñiga, Carlos Gustavo
dc.contributor.author.fl_str_mv Russmann, Julius Paul
dc.subject.es_ES.fl_str_mv Tuberías--Dinámica de fluidos
Algoritmos
Control automático--Diseño y construcción
topic Tuberías--Dinámica de fluidos
Algoritmos
Control automático--Diseño y construcción
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description En esta tesis se aplican por primera vez métodos basados en modelos sin discretización espacial para detectar y localizar fugas en una planta piloto de transporte de fluidos. Basado en un modelo matemático que describe la dinámica de fluidos dentro de la tubería de agua mediante dos ecuaciones diferenciales parciales que son hiperbólicas, lineales, unidimensionales y acopladas, se deriva y diseña tanto un observador dinámico como algebraico. El diseño del observador dinámico combina un enfoque de Luenberger con una transformación de backstepping para demostrar la estabilidad asintótica del error del observador. Como consecuencia, el observador resulta en un sistema dinámico de dos sistemas diferenciales parciales hiperbólicos acoplados. Por el contrario, el diseño del observador algebraico aplica el método de las funciones de modulación para convertir el modelo matemático en problemas auxiliares que también son dados por ecuaciones diferenciales parciales. Los problemas auxiliares se pueden resolver fuera de línea, tal que para estimar el tamaño y la posición de la fuga en línea se tienen que resolver solamente ecuaciones algebraicas input-output. Se enfatiza que ambos esquemas de observación se derivan directamente del modelo matemático sin discretización espacial. Por lo tanto, esta tesis aborda la brecha de investigación con respecto a métodos de detección y localización de fugas que sean basados en un modelo matemático y que no requieren una discretización espacial del sistema. En simulaciones comparativas, se evalúa el desempeño de ambos observadores para una tubería de agua ejemplar en diversas condiciones de operación, por ejemplo, el tamaño de la fuga, la posición de la fuga, el caudal de entrada y el ruido de medición. Se compara la precisión de los esquemas de observación, y se verifica la capacidad en tiempo real de ambos algoritmos. Finalmente, la dinámica y el observador algebraico se utilizan para estimar el tamaño y la posición de la fuga para una planta piloto de transporte de fluidos instalada en el laboratorio de Ingeniería de Control Avanzado en la PUCP. Se revela que, al contrario de la suposición de un modelo lineal para la perdida por fricción, las pérdidas por fricción dependen cuadráticamente del caudal tal que un modelo no lineal describa con mayor exactitud la dinámica del fluido de la planta piloto. Sin embargo, se ha demostrado que para las fugas que surgen cerca de la salida de la tubería, ambos observadores estiman la posición de la fuga con desviaciones inferiores al 5% y logran la precisión deseada. Además, se ha demostrado que una extensión del observador dinámico hacia el modelo no lineal permite localizar la fuga con desviaciones inferiores al 5%, independientemente de la posición de la fuga.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-06T14:56:37Z
dc.date.available.none.fl_str_mv 2023-11-06T14:56:37Z
dc.date.created.none.fl_str_mv 2023
dc.date.issued.fl_str_mv 2023-11-06
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/26355
url http://hdl.handle.net/20.500.12404/26355
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/e0d7d3ab-c533-48f5-abca-ac1290039acb/download
https://tesis.pucp.edu.pe/bitstreams/61bc31e5-5d15-4c44-9b71-ca71c92127ff/download
https://tesis.pucp.edu.pe/bitstreams/62cde00a-84df-4716-a959-aec675e47efa/download
https://tesis.pucp.edu.pe/bitstreams/2a3d5289-2a9f-4a62-ac2b-1d1a6b0505e3/download
https://tesis.pucp.edu.pe/bitstreams/334aa573-01bf-4559-a43e-815f5eac0e1e/download
https://tesis.pucp.edu.pe/bitstreams/6bb37327-8d84-48e7-bd11-d5b437b49fd8/download
bitstream.checksum.fl_str_mv d2bdc7fb97a0569c2d678825fe64882f
9dc9c34dc7d62739d5f08df56dbde002
3655808e5dd46167956d6870b0f43800
8a4605be74aa9ea9d79846c1fba20a33
a3855d8e2a10490114c3e5824955aff2
0be0131fc5e1a6422d9dd2979759763f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834737134035009536
spelling Perez Zuñiga, Carlos GustavoRussmann, Julius Paul2023-11-06T14:56:37Z2023-11-06T14:56:37Z20232023-11-06http://hdl.handle.net/20.500.12404/26355En esta tesis se aplican por primera vez métodos basados en modelos sin discretización espacial para detectar y localizar fugas en una planta piloto de transporte de fluidos. Basado en un modelo matemático que describe la dinámica de fluidos dentro de la tubería de agua mediante dos ecuaciones diferenciales parciales que son hiperbólicas, lineales, unidimensionales y acopladas, se deriva y diseña tanto un observador dinámico como algebraico. El diseño del observador dinámico combina un enfoque de Luenberger con una transformación de backstepping para demostrar la estabilidad asintótica del error del observador. Como consecuencia, el observador resulta en un sistema dinámico de dos sistemas diferenciales parciales hiperbólicos acoplados. Por el contrario, el diseño del observador algebraico aplica el método de las funciones de modulación para convertir el modelo matemático en problemas auxiliares que también son dados por ecuaciones diferenciales parciales. Los problemas auxiliares se pueden resolver fuera de línea, tal que para estimar el tamaño y la posición de la fuga en línea se tienen que resolver solamente ecuaciones algebraicas input-output. Se enfatiza que ambos esquemas de observación se derivan directamente del modelo matemático sin discretización espacial. Por lo tanto, esta tesis aborda la brecha de investigación con respecto a métodos de detección y localización de fugas que sean basados en un modelo matemático y que no requieren una discretización espacial del sistema. En simulaciones comparativas, se evalúa el desempeño de ambos observadores para una tubería de agua ejemplar en diversas condiciones de operación, por ejemplo, el tamaño de la fuga, la posición de la fuga, el caudal de entrada y el ruido de medición. Se compara la precisión de los esquemas de observación, y se verifica la capacidad en tiempo real de ambos algoritmos. Finalmente, la dinámica y el observador algebraico se utilizan para estimar el tamaño y la posición de la fuga para una planta piloto de transporte de fluidos instalada en el laboratorio de Ingeniería de Control Avanzado en la PUCP. Se revela que, al contrario de la suposición de un modelo lineal para la perdida por fricción, las pérdidas por fricción dependen cuadráticamente del caudal tal que un modelo no lineal describa con mayor exactitud la dinámica del fluido de la planta piloto. Sin embargo, se ha demostrado que para las fugas que surgen cerca de la salida de la tubería, ambos observadores estiman la posición de la fuga con desviaciones inferiores al 5% y logran la precisión deseada. Además, se ha demostrado que una extensión del observador dinámico hacia el modelo no lineal permite localizar la fuga con desviaciones inferiores al 5%, independientemente de la posición de la fuga.The present work utilizes for the first time model-based late lumping leak detection methods to detect and localize leakage in a real water pipe. Based on a mathematical model that describes the fluid dynamics inside the water pipe by two coupled linear one dimensional hyperbolic partial differential equations, a dynamic and an algebraic leakage observer are designed. The dynamic observer design combines a Luenberger ansatz with a backstepping transformation to prove the asymptotic stability of the observer error and results in a dynamic system of two coupled hyperbolic partial differential systems. Contrary to that, the algebraic observer design applies the modulating function method to convert the mathematical model into offline solvable auxiliary problems and algebraic input-output equations that are resolved online to estimate the leak size and the leak position. It is emphasized that both observer schemes are derived directly from the mathematical model without spatial discretization. Thereby, this thesis addresses the research gap regarding model-based late lumping leak detection and localization techniques. In comparative simulations, the performance of both observer schemes is evaluated for an exemplary water pipe under various operating conditions, e.g., w.r.t. the leak size, the leak position, the inlet flow rate and the measurement noise. The accuracy of the observer schemes is compared, and the real-time capability of both algorithms is verified. Finally, the dynamic and the algebraic observer are utilized to estimate the leak size and the leak position for a pilot fluid transport plant installed in the laboratory of Advanced Control Engineering at the PUCP. It is revealed that, in opposite to the model assumption of linear friction losses, the friction losses depend quadratically on the flow rate such that a nonlinear model describes the flow dynamics of the pilot plant more exactly. However, it is shown that for leaks occurring near to the outlet of the pipe, both observers estimate the leak position with deviations of under 5 % and reach thereby the desired accuracy. Furthermore, it is demonstrated that an extension of the dynamic observer towards the nonlinear model permits localizing the leak with deviations of under 5 % regardless of its position.Die vorliegende Arbeit verwendet erstmals räumlich undiskretisierte modellbasierte Methoden zur Erkennung und Lokalisierung von Leckagen in einer realen Wasserleitung. Basierend auf einem mathematischen Modell, das die Strömungsdynamik im Rohr durch zwei gekoppelte lineare eindimensionale hyperbolische partielle Differentialgleichungen beschreibt, werden ein dynamischer und ein algebraischer Leckagebeobachter entworfen. Der dynamische Beobachterentwirf kombiniert einen Luenberger-Ansatz mit einer Backstepping-Transformation, um die asymptotische Stabilität des Beobachterfehlers nachzuweisen und resultiert in einem dynamischen System aus zwei gekoppelten hyperbolischen partiellen Differentialgleichungen. Im Gegensatz dazu verwendet der algebraische Beobachterentwurf die Modulationsfunktionsmethode, um das mathematische Modell in offline lösbare Hilfsprobleme sowie algebraische Eingangs-Ausgangs-Gleichungen zu überführen, die online gelöst werden, um die Leckgröße und die Leckageposition zu schätzen. Es wird hervorgehoben, dass beiden Beobachter direkt aus dem mathematischen Modell ohne räumliche Diskretisierung abgeleitet sind. Die vorliegende Arbeit adressiert damit eine existierende Forschungslücke hinsichtlich modellbasierter Leckagelokalisierung. In vergleichenden Simulationen wird die Performance beider Beobachter für eine exemplarische Wasserleitung unter unterschiedlichen Betriebsbedingungen untersucht, z. B. hinsichtlich der Leckgröße, der Leckposition, des Volumenstroms am Einlass und dem Messrauschen. Die Genauigkeit der Beobachter wird verglichen und die Echtzeitfähigkeit beider Algorithmen überprüft. Anschließend werden der dynamische und der algebraische Beobachter verwendet, um die Leckgröße und die Leckageposition für eine Pilotanlage, die im Labor für Regelungstechnik an der PUCP installiert ist, zu schätzen. Es zeigt sich, dass die Reibungsverluste entgegen der Modellannahme quadratisch von der Strömungsgeschwindigkeit abhängen, sodass ein nichtlineares Modell die Strömungsdynamik der Pilotanlage genauer beschreibt. Es zeigt sich jedoch, dass bei Leckagen in der Nähe des Rohrauslasses beide Beobachter die Leckageposition mit Abweichungen von unter 5 % schätzen und damit die gewünschte Genauigkeit erreichen. Abschließend wird gezeigt, dass eine Erweiterung des dynamischen Beobachters hin zum nichtlinearen Modell die Lokalisierung des Lecks mit Abweichungen von weniger als 5 % unabhängig von seiner Position ermöglicht.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Tuberías--Dinámica de fluidosAlgoritmosControl automático--Diseño y construcciónhttps://purl.org/pe-repo/ocde/ford#2.02.03Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systemsinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de Posgrado.Ingeniería de Control y Automatización41864666https://orcid.org/0000-0001-5946-1395CH9WLH57J712037Tafur Sotelo, Julio CesarPerez Zuñiga, Carlos GustavoReger, Johannhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALRUSSMANN_JULIUS_PAUL_DYNAMIC_ALGEBRAIC_OBSERVER.pdfRUSSMANN_JULIUS_PAUL_DYNAMIC_ALGEBRAIC_OBSERVER.pdfTexto completoapplication/pdf9708164https://tesis.pucp.edu.pe/bitstreams/e0d7d3ab-c533-48f5-abca-ac1290039acb/downloadd2bdc7fb97a0569c2d678825fe64882fMD51trueAnonymousREADRUSSMANN_JULIUS_PAUL_T.pdfRUSSMANN_JULIUS_PAUL_T.pdfReporte de originalidadapplication/pdf23665086https://tesis.pucp.edu.pe/bitstreams/61bc31e5-5d15-4c44-9b71-ca71c92127ff/download9dc9c34dc7d62739d5f08df56dbde002MD52falseAnonymousREAD2500-01-01CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://tesis.pucp.edu.pe/bitstreams/62cde00a-84df-4716-a959-aec675e47efa/download3655808e5dd46167956d6870b0f43800MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/2a3d5289-2a9f-4a62-ac2b-1d1a6b0505e3/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADTHUMBNAILRUSSMANN_JULIUS_PAUL_DYNAMIC_ALGEBRAIC_OBSERVER.pdf.jpgRUSSMANN_JULIUS_PAUL_DYNAMIC_ALGEBRAIC_OBSERVER.pdf.jpgIM Thumbnailimage/jpeg11346https://tesis.pucp.edu.pe/bitstreams/334aa573-01bf-4559-a43e-815f5eac0e1e/downloada3855d8e2a10490114c3e5824955aff2MD55falseAnonymousREADRUSSMANN_JULIUS_PAUL_T.pdf.jpgRUSSMANN_JULIUS_PAUL_T.pdf.jpgIM Thumbnailimage/jpeg10814https://tesis.pucp.edu.pe/bitstreams/6bb37327-8d84-48e7-bd11-d5b437b49fd8/download0be0131fc5e1a6422d9dd2979759763fMD56falseAnonymousREAD2500-01-0120.500.12404/26355oai:tesis.pucp.edu.pe:20.500.12404/263552024-05-27 16:45:01.135http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).