Multi-scale image inpainting with label selection based on local statistics
Descripción del Articulo
We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible s...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2014 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | inglés |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/5578 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/5578 |
Nivel de acceso: | acceso abierto |
Materia: | Algoritmos Procesamiento de imágenes digitales Procesos estocásticos https://purl.org/pe-repo/ocde/ford#2.02.05 |
id |
PUCP_fd08cbe5ce8d7fb33e71c6dbf91f91fe |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/5578 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
Multi-scale image inpainting with label selection based on local statistics |
title |
Multi-scale image inpainting with label selection based on local statistics |
spellingShingle |
Multi-scale image inpainting with label selection based on local statistics Paredes Zevallos, Daniel Leoncio Algoritmos Procesamiento de imágenes digitales Procesos estocásticos https://purl.org/pe-repo/ocde/ford#2.02.05 |
title_short |
Multi-scale image inpainting with label selection based on local statistics |
title_full |
Multi-scale image inpainting with label selection based on local statistics |
title_fullStr |
Multi-scale image inpainting with label selection based on local statistics |
title_full_unstemmed |
Multi-scale image inpainting with label selection based on local statistics |
title_sort |
Multi-scale image inpainting with label selection based on local statistics |
author |
Paredes Zevallos, Daniel Leoncio |
author_facet |
Paredes Zevallos, Daniel Leoncio |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Rodríguez Valderrama, Paúl Antonio |
dc.contributor.author.fl_str_mv |
Paredes Zevallos, Daniel Leoncio |
dc.subject.es_ES.fl_str_mv |
Algoritmos Procesamiento de imágenes digitales Procesos estocásticos |
topic |
Algoritmos Procesamiento de imágenes digitales Procesos estocásticos https://purl.org/pe-repo/ocde/ford#2.02.05 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.05 |
description |
We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible solutions’ labels). Our multi-scale approach seeks to reduces the number of the L (feasible) labels by an appropiate selection of the labels using the information of the previous (low resolution) scale. For the initial label selection we use local statistics; moreover, to compensate the loss of information in low resolution levels we use features related to the original image gradient. Our computational results show that our approach is competitive, in terms reconstruction quality, when compare to the original MRF based inpainting, as well as other exemplarbased inpaiting algorithms, while being at least one order of magnitude faster than the original MRF based inpainting and competitive with exemplar-based inpaiting. |
publishDate |
2014 |
dc.date.accessioned.es_ES.fl_str_mv |
2014-09-09T22:01:52Z |
dc.date.available.es_ES.fl_str_mv |
2014-09-09T22:01:52Z |
dc.date.created.es_ES.fl_str_mv |
2014 |
dc.date.issued.fl_str_mv |
2014-09-09 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/5578 |
url |
http://hdl.handle.net/20.500.12404/5578 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/90313a3c-df82-43d3-ae9a-7c87779aa3e9/download https://tesis.pucp.edu.pe/bitstreams/5996ce65-a2af-4be5-b0a8-06dba5a15721/download https://tesis.pucp.edu.pe/bitstreams/793f59e2-eaa1-471a-b878-0c9cfab4859d/download https://tesis.pucp.edu.pe/bitstreams/0a04d5d3-c423-42af-a5e9-2018d6c981d7/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 ab37acb2d1b0d160e9288beaf27223bc fc437dcdc39233412b9a96617a4d0657 684e8c406fc2d8cd398ed0ba45d2a768 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1839176947893010432 |
spelling |
Rodríguez Valderrama, Paúl AntonioParedes Zevallos, Daniel Leoncio2014-09-09T22:01:52Z2014-09-09T22:01:52Z20142014-09-09http://hdl.handle.net/20.500.12404/5578We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible solutions’ labels). Our multi-scale approach seeks to reduces the number of the L (feasible) labels by an appropiate selection of the labels using the information of the previous (low resolution) scale. For the initial label selection we use local statistics; moreover, to compensate the loss of information in low resolution levels we use features related to the original image gradient. Our computational results show that our approach is competitive, in terms reconstruction quality, when compare to the original MRF based inpainting, as well as other exemplarbased inpaiting algorithms, while being at least one order of magnitude faster than the original MRF based inpainting and competitive with exemplar-based inpaiting.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/AlgoritmosProcesamiento de imágenes digitalesProcesos estocásticoshttps://purl.org/pe-repo/ocde/ford#2.02.05Multi-scale image inpainting with label selection based on local statisticsinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de señales e imágenes digitalesMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de señales e imágenes digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/90313a3c-df82-43d3-ae9a-7c87779aa3e9/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADORIGINALPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdfPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdfapplication/pdf15830927https://tesis.pucp.edu.pe/bitstreams/5996ce65-a2af-4be5-b0a8-06dba5a15721/downloadab37acb2d1b0d160e9288beaf27223bcMD51trueAnonymousREADTEXTPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.txtPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.txtExtracted texttext/plain47319https://tesis.pucp.edu.pe/bitstreams/793f59e2-eaa1-471a-b878-0c9cfab4859d/downloadfc437dcdc39233412b9a96617a4d0657MD55falseAnonymousREADTHUMBNAILPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.jpgPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.jpgIM Thumbnailimage/jpeg31989https://tesis.pucp.edu.pe/bitstreams/0a04d5d3-c423-42af-a5e9-2018d6c981d7/download684e8c406fc2d8cd398ed0ba45d2a768MD56falseAnonymousREAD20.500.12404/5578oai:tesis.pucp.edu.pe:20.500.12404/55782025-07-18 12:53:00.554http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.376803 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).