Multi-scale image inpainting with label selection based on local statistics

Descripción del Articulo

We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible s...

Descripción completa

Detalles Bibliográficos
Autor: Paredes Zevallos, Daniel Leoncio
Formato: tesis de maestría
Fecha de Publicación:2014
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/5578
Enlace del recurso:http://hdl.handle.net/20.500.12404/5578
Nivel de acceso:acceso abierto
Materia:Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
https://purl.org/pe-repo/ocde/ford#2.02.05
id PUCP_fd08cbe5ce8d7fb33e71c6dbf91f91fe
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/5578
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Multi-scale image inpainting with label selection based on local statistics
title Multi-scale image inpainting with label selection based on local statistics
spellingShingle Multi-scale image inpainting with label selection based on local statistics
Paredes Zevallos, Daniel Leoncio
Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Multi-scale image inpainting with label selection based on local statistics
title_full Multi-scale image inpainting with label selection based on local statistics
title_fullStr Multi-scale image inpainting with label selection based on local statistics
title_full_unstemmed Multi-scale image inpainting with label selection based on local statistics
title_sort Multi-scale image inpainting with label selection based on local statistics
author Paredes Zevallos, Daniel Leoncio
author_facet Paredes Zevallos, Daniel Leoncio
author_role author
dc.contributor.advisor.fl_str_mv Rodríguez Valderrama, Paúl Antonio
dc.contributor.author.fl_str_mv Paredes Zevallos, Daniel Leoncio
dc.subject.es_ES.fl_str_mv Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
topic Algoritmos
Procesamiento de imágenes digitales
Procesos estocásticos
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible solutions’ labels). Our multi-scale approach seeks to reduces the number of the L (feasible) labels by an appropiate selection of the labels using the information of the previous (low resolution) scale. For the initial label selection we use local statistics; moreover, to compensate the loss of information in low resolution levels we use features related to the original image gradient. Our computational results show that our approach is competitive, in terms reconstruction quality, when compare to the original MRF based inpainting, as well as other exemplarbased inpaiting algorithms, while being at least one order of magnitude faster than the original MRF based inpainting and competitive with exemplar-based inpaiting.
publishDate 2014
dc.date.accessioned.es_ES.fl_str_mv 2014-09-09T22:01:52Z
dc.date.available.es_ES.fl_str_mv 2014-09-09T22:01:52Z
dc.date.created.es_ES.fl_str_mv 2014
dc.date.issued.fl_str_mv 2014-09-09
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/5578
url http://hdl.handle.net/20.500.12404/5578
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/90313a3c-df82-43d3-ae9a-7c87779aa3e9/download
https://tesis.pucp.edu.pe/bitstreams/5996ce65-a2af-4be5-b0a8-06dba5a15721/download
https://tesis.pucp.edu.pe/bitstreams/793f59e2-eaa1-471a-b878-0c9cfab4859d/download
https://tesis.pucp.edu.pe/bitstreams/0a04d5d3-c423-42af-a5e9-2018d6c981d7/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
ab37acb2d1b0d160e9288beaf27223bc
fc437dcdc39233412b9a96617a4d0657
684e8c406fc2d8cd398ed0ba45d2a768
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176947893010432
spelling Rodríguez Valderrama, Paúl AntonioParedes Zevallos, Daniel Leoncio2014-09-09T22:01:52Z2014-09-09T22:01:52Z20142014-09-09http://hdl.handle.net/20.500.12404/5578We proposed a novel inpainting method where we use a multi-scale approach to speed up the well-known Markov Random Field (MRF) based inpainting method. MRF based inpainting methods are slow when compared with other exemplar-based methods, because its computational complexity is O(jLj2) (L feasible solutions’ labels). Our multi-scale approach seeks to reduces the number of the L (feasible) labels by an appropiate selection of the labels using the information of the previous (low resolution) scale. For the initial label selection we use local statistics; moreover, to compensate the loss of information in low resolution levels we use features related to the original image gradient. Our computational results show that our approach is competitive, in terms reconstruction quality, when compare to the original MRF based inpainting, as well as other exemplarbased inpaiting algorithms, while being at least one order of magnitude faster than the original MRF based inpainting and competitive with exemplar-based inpaiting.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/AlgoritmosProcesamiento de imágenes digitalesProcesos estocásticoshttps://purl.org/pe-repo/ocde/ford#2.02.05Multi-scale image inpainting with label selection based on local statisticsinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de señales e imágenes digitalesMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de señales e imágenes digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/90313a3c-df82-43d3-ae9a-7c87779aa3e9/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADORIGINALPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdfPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdfapplication/pdf15830927https://tesis.pucp.edu.pe/bitstreams/5996ce65-a2af-4be5-b0a8-06dba5a15721/downloadab37acb2d1b0d160e9288beaf27223bcMD51trueAnonymousREADTEXTPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.txtPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.txtExtracted texttext/plain47319https://tesis.pucp.edu.pe/bitstreams/793f59e2-eaa1-471a-b878-0c9cfab4859d/downloadfc437dcdc39233412b9a96617a4d0657MD55falseAnonymousREADTHUMBNAILPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.jpgPAREDES_DANIEL_IMAGE_INPAINTING_LOCAL_STATISTICS.pdf.jpgIM Thumbnailimage/jpeg31989https://tesis.pucp.edu.pe/bitstreams/0a04d5d3-c423-42af-a5e9-2018d6c981d7/download684e8c406fc2d8cd398ed0ba45d2a768MD56falseAnonymousREAD20.500.12404/5578oai:tesis.pucp.edu.pe:20.500.12404/55782025-07-18 12:53:00.554http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.376803
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).