Nonlinear adaptive observer design for a reverse osmosis plant

Descripción del Articulo

This thesis proposes a novel approach for a nonlinear adaptive observer design applied to a reverse osmosis desalination plant. The considered mathematical model of the de- salination system includes nonlinearities of the states and the parameters that cannot be handled with previously published est...

Descripción completa

Detalles Bibliográficos
Autor: Korder, Kristina
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/20866
Enlace del recurso:http://hdl.handle.net/20.500.12404/20866
Nivel de acceso:acceso abierto
Materia:Plantas para tratamiento de agua
Sistemas no lineales--Control
Sistemas de control adaptativo
https://purl.org/pe-repo/ocde/ford#2.00.00
id PUCP_f5681a32b14b6f65d5cdfb403c0b5c9b
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/20866
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Nonlinear adaptive observer design for a reverse osmosis plant
title Nonlinear adaptive observer design for a reverse osmosis plant
spellingShingle Nonlinear adaptive observer design for a reverse osmosis plant
Korder, Kristina
Plantas para tratamiento de agua
Sistemas no lineales--Control
Sistemas de control adaptativo
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Nonlinear adaptive observer design for a reverse osmosis plant
title_full Nonlinear adaptive observer design for a reverse osmosis plant
title_fullStr Nonlinear adaptive observer design for a reverse osmosis plant
title_full_unstemmed Nonlinear adaptive observer design for a reverse osmosis plant
title_sort Nonlinear adaptive observer design for a reverse osmosis plant
author Korder, Kristina
author_facet Korder, Kristina
author_role author
dc.contributor.advisor.fl_str_mv Pérez Zúñiga, Carlos Gustavo
dc.contributor.author.fl_str_mv Korder, Kristina
dc.subject.es_ES.fl_str_mv Plantas para tratamiento de agua
Sistemas no lineales--Control
Sistemas de control adaptativo
topic Plantas para tratamiento de agua
Sistemas no lineales--Control
Sistemas de control adaptativo
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description This thesis proposes a novel approach for a nonlinear adaptive observer design applied to a reverse osmosis desalination plant. The considered mathematical model of the de- salination system includes nonlinearities of the states and the parameters that cannot be handled with previously published estimation methods which are based on the mod- ulating function technique. Therefore, the proposed real-time capable approach uses a decoupled parameter estimator and state observer. These estimates can be utilized for developing a controller or a fault detection system of the desalination plant with the aim of improving the quality and effort of fresh water production. The parameter estimator is composed of a convolution filter with modulating func- tions and the common Extended Kalman-Bucy Filter in order to estimate nonlinear parameters of a state-linear input/output relation. To receive a regression form of the nonlinear system for the state observer and to avoid the necessity of time-derivatives of the measured input and output signals, a linearization by means of the Taylor se- ries and the modulating function technique are applied. The estimates can be non- asymptotically obtained by using a sliding window of finite length. This procedure allows a continuous and recursive update of the state estimates and extends the possi- ble applications of the modulating function technique to nonlinear systems. Comparative simulations are executed with the considered nonlinear system of a reverse osmosis desalination plant. Distinct scenarios with respect to the parameter change and the impact of noise are examined. The parameter and state coupled Ex- tended Kalman-Bucy Filter shows an asymptotic convergence of its estimates, whereas the decoupled proposed adaptive observer confirms its non-asymptotic behavior by fast estimation results.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-11T17:16:41Z
dc.date.available.none.fl_str_mv 2021-11-11T17:16:41Z
dc.date.created.none.fl_str_mv 2021
dc.date.issued.fl_str_mv 2021-11-11
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/20866
url http://hdl.handle.net/20.500.12404/20866
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/475a34f7-3959-4977-8e2a-089d05ce5175/download
https://tesis.pucp.edu.pe/bitstreams/173187a3-d491-47d0-97c6-f913068c8d7e/download
https://tesis.pucp.edu.pe/bitstreams/59600ecc-02ef-425a-bccf-b0ae86c0db98/download
https://tesis.pucp.edu.pe/bitstreams/57a68e20-d760-4933-bf09-e1987bf4e92e/download
bitstream.checksum.fl_str_mv f1bd2c8042fed094c164de8f5bfad4ce
8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
6a185667720b109d1f9777259aae98b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834737035293753344
spelling Pérez Zúñiga, Carlos GustavoKorder, Kristina2021-11-11T17:16:41Z2021-11-11T17:16:41Z20212021-11-11http://hdl.handle.net/20.500.12404/20866This thesis proposes a novel approach for a nonlinear adaptive observer design applied to a reverse osmosis desalination plant. The considered mathematical model of the de- salination system includes nonlinearities of the states and the parameters that cannot be handled with previously published estimation methods which are based on the mod- ulating function technique. Therefore, the proposed real-time capable approach uses a decoupled parameter estimator and state observer. These estimates can be utilized for developing a controller or a fault detection system of the desalination plant with the aim of improving the quality and effort of fresh water production. The parameter estimator is composed of a convolution filter with modulating func- tions and the common Extended Kalman-Bucy Filter in order to estimate nonlinear parameters of a state-linear input/output relation. To receive a regression form of the nonlinear system for the state observer and to avoid the necessity of time-derivatives of the measured input and output signals, a linearization by means of the Taylor se- ries and the modulating function technique are applied. The estimates can be non- asymptotically obtained by using a sliding window of finite length. This procedure allows a continuous and recursive update of the state estimates and extends the possi- ble applications of the modulating function technique to nonlinear systems. Comparative simulations are executed with the considered nonlinear system of a reverse osmosis desalination plant. Distinct scenarios with respect to the parameter change and the impact of noise are examined. The parameter and state coupled Ex- tended Kalman-Bucy Filter shows an asymptotic convergence of its estimates, whereas the decoupled proposed adaptive observer confirms its non-asymptotic behavior by fast estimation results.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Plantas para tratamiento de aguaSistemas no lineales--ControlSistemas de control adaptativohttps://purl.org/pe-repo/ocde/ford#2.00.00Nonlinear adaptive observer design for a reverse osmosis plantinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de Posgrado.Ingeniería de Control y Automatización41864666https://orcid.org/0000-0001-5946-1395CG7WVM7K2712037Reger , JohannPérez Zúñiga, Carlos GustavoSotomayor Moriano, Juan Javierhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALKORDER_KRISTINA_NONLINEAR_ADAPTIVE_OBSERVER.pdfKORDER_KRISTINA_NONLINEAR_ADAPTIVE_OBSERVER.pdfTexto completoapplication/pdf2700898https://tesis.pucp.edu.pe/bitstreams/475a34f7-3959-4977-8e2a-089d05ce5175/downloadf1bd2c8042fed094c164de8f5bfad4ceMD51trueAnonymousREAD2022-01-01CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://tesis.pucp.edu.pe/bitstreams/173187a3-d491-47d0-97c6-f913068c8d7e/download8fc46f5e71650fd7adee84a69b9163c2MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/59600ecc-02ef-425a-bccf-b0ae86c0db98/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILKORDER_KRISTINA_NONLINEAR_ADAPTIVE_OBSERVER.pdf.jpgKORDER_KRISTINA_NONLINEAR_ADAPTIVE_OBSERVER.pdf.jpgIM Thumbnailimage/jpeg18701https://tesis.pucp.edu.pe/bitstreams/57a68e20-d760-4933-bf09-e1987bf4e92e/download6a185667720b109d1f9777259aae98b3MD54falseAnonymousREAD20.500.12404/20866oai:tesis.pucp.edu.pe:20.500.12404/208662024-05-27 16:57:03.059http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.922529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).