Aprendizaje automático no supervisado en segmentadores morfológicos para una lengua de escasos recursos caso de estudio: SHIWILU

Descripción del Articulo

El Shiwilu es considerada ‘seriamente en peligro’ porque es hablada principalmente por adultos mayores de forma parcial, poco frecuente y en contextos restringidos; además, no continúa siendo transmitida a nuevas generaciones. Este tipo de lenguas necesitan pasar por un proceso de revitalización (fo...

Descripción completa

Detalles Bibliográficos
Autor: Asmat Ramirez, Evelyn Fiorella
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/25281
Enlace del recurso:http://hdl.handle.net/20.500.12404/25281
Nivel de acceso:acceso abierto
Materia:Jebero (Shiwilu)--Perú--Amazonía, Región
Algoritmos
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#1.02.00
Descripción
Sumario:El Shiwilu es considerada ‘seriamente en peligro’ porque es hablada principalmente por adultos mayores de forma parcial, poco frecuente y en contextos restringidos; además, no continúa siendo transmitida a nuevas generaciones. Este tipo de lenguas necesitan pasar por un proceso de revitalización (fortalecimiento) para garantizar que no se extingan y así fomentar el interés de sus hablantes. Además, su documentación es muy escasa debido a los pocos estudios lingüísticos realizados. A fin de elevar su status, se sugiere la creación de recursos y tecnología de corte lingüístico, como corpus monolingüe y bilingüe, diccionarios, reconocimiento de categorías gramaticales, analizadores morfológicos, etc. Sin embargo, la mayoría de las lenguas existentes no se beneficia con alguno de estos recursos y/o tecnologías, y por ello son consideradas como lenguas de escasos recursos. Debido a la falta de inversión, se requiere un enfoque en el que se busquen soluciones robustas a un bajo costo a través de herramientas independientes de la lengua, modelos de desarrollo de código abierto o algoritmos de aprendizaje automático no supervisado. Bajo este contexto, se identifica como problema central el desconocimiento de un enfoque adecuado para la segmentación morfológica de una lengua de escasos recursos; y para ello, el presente proyecto propone realizar una segmentación morfológica automática no supervisada en una lengua con estas características a partir de la identificación del tipo de enfoque, monolingüe o multilingüe, que ofrece mejores resultados en esta tarea.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).