Automatic lymphocyte detection on gastric cancer IHC images using deep learning
Descripción del Articulo
Tumor-infiltrating lymphocytes (TILs) have received considerable attention in recent years, as evidence suggests they are related to cancer prognosis. Distribution and localization of these and other types of immune cells are of special interest for pathologists, and frequently involve manual examin...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2017 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | inglés |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/9905 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/9905 |
| Nivel de acceso: | acceso abierto |
| Materia: | Cáncer Gastroenterología Aprendizaje automático (Inteligencia artificial) https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
PUCP_e1812f02b968c70befb7fe4199d7b96b |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/9905 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning |
| title |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning |
| spellingShingle |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning García Ríos, Emilio Rafael Cáncer Gastroenterología Aprendizaje automático (Inteligencia artificial) https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning |
| title_full |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning |
| title_fullStr |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning |
| title_full_unstemmed |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning |
| title_sort |
Automatic lymphocyte detection on gastric cancer IHC images using deep learning |
| author |
García Ríos, Emilio Rafael |
| author_facet |
García Ríos, Emilio Rafael |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Beltrán Castañón, César Armando |
| dc.contributor.author.fl_str_mv |
García Ríos, Emilio Rafael |
| dc.subject.es_ES.fl_str_mv |
Cáncer Gastroenterología Aprendizaje automático (Inteligencia artificial) |
| topic |
Cáncer Gastroenterología Aprendizaje automático (Inteligencia artificial) https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
Tumor-infiltrating lymphocytes (TILs) have received considerable attention in recent years, as evidence suggests they are related to cancer prognosis. Distribution and localization of these and other types of immune cells are of special interest for pathologists, and frequently involve manual examination on Immunohistochemistry (IHC) Images. We present a model based on Deep Convolutional Neural Networks for Automatic lymphocyte detection on IHC images of gastric cancer. The dataset created as part of this work is publicly available for future research. |
| publishDate |
2017 |
| dc.date.created.es_ES.fl_str_mv |
2017 |
| dc.date.accessioned.es_ES.fl_str_mv |
2018-01-19T21:32:22Z |
| dc.date.available.es_ES.fl_str_mv |
2018-01-19T21:32:22Z |
| dc.date.issued.fl_str_mv |
2018-01-19 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/9905 |
| url |
http://hdl.handle.net/20.500.12404/9905 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/417bee21-69ab-487e-947e-0c351799a79d/download https://tesis.pucp.edu.pe/bitstreams/05add1df-fa55-42dc-9ebc-1a54f5374f5f/download https://tesis.pucp.edu.pe/bitstreams/33429f4d-49b5-4cab-bff4-c8bb9312d3b0/download https://tesis.pucp.edu.pe/bitstreams/a5ebb73a-0c2a-45e0-be4a-3d8c801eed60/download |
| bitstream.checksum.fl_str_mv |
6253607306fe4d1b399b62088c6cd8ea 8a4605be74aa9ea9d79846c1fba20a33 273b6d7666e8d60b03cf92a907123d2a 57c8d8cde75e2a8c4ac5a76f7e7a7ca9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1839176259093921792 |
| spelling |
Beltrán Castañón, César ArmandoGarcía Ríos, Emilio Rafael2018-01-19T21:32:22Z2018-01-19T21:32:22Z20172018-01-19http://hdl.handle.net/20.500.12404/9905Tumor-infiltrating lymphocytes (TILs) have received considerable attention in recent years, as evidence suggests they are related to cancer prognosis. Distribution and localization of these and other types of immune cells are of special interest for pathologists, and frequently involve manual examination on Immunohistochemistry (IHC) Images. We present a model based on Deep Convolutional Neural Networks for Automatic lymphocyte detection on IHC images of gastric cancer. The dataset created as part of this work is publicly available for future research.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/CáncerGastroenterologíaAprendizaje automático (Inteligencia artificial)https://purl.org/pe-repo/ocde/ford#1.02.00Automatic lymphocyte detection on gastric cancer IHC images using deep learninginfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática con mención en Ciencias de la Computación29561260https://orcid.org/0000-0002-0173-4140611087https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdfGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdfTexto completoapplication/pdf318220https://tesis.pucp.edu.pe/bitstreams/417bee21-69ab-487e-947e-0c351799a79d/download6253607306fe4d1b399b62088c6cd8eaMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/05add1df-fa55-42dc-9ebc-1a54f5374f5f/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTHUMBNAILGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.jpgGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.jpgIM Thumbnailimage/jpeg17424https://tesis.pucp.edu.pe/bitstreams/33429f4d-49b5-4cab-bff4-c8bb9312d3b0/download273b6d7666e8d60b03cf92a907123d2aMD53falseAnonymousREADTEXTGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.txtGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.txtExtracted texttext/plain20963https://tesis.pucp.edu.pe/bitstreams/a5ebb73a-0c2a-45e0-be4a-3d8c801eed60/download57c8d8cde75e2a8c4ac5a76f7e7a7ca9MD54falseAnonymousREAD20.500.12404/9905oai:tesis.pucp.edu.pe:20.500.12404/99052025-07-18 12:53:35.271http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.413352 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).