Automatic lymphocyte detection on gastric cancer IHC images using deep learning

Descripción del Articulo

Tumor-infiltrating lymphocytes (TILs) have received considerable attention in recent years, as evidence suggests they are related to cancer prognosis. Distribution and localization of these and other types of immune cells are of special interest for pathologists, and frequently involve manual examin...

Descripción completa

Detalles Bibliográficos
Autor: García Ríos, Emilio Rafael
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/9905
Enlace del recurso:http://hdl.handle.net/20.500.12404/9905
Nivel de acceso:acceso abierto
Materia:Cáncer
Gastroenterología
Aprendizaje automático (Inteligencia artificial)
https://purl.org/pe-repo/ocde/ford#1.02.00
id PUCP_e1812f02b968c70befb7fe4199d7b96b
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/9905
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Automatic lymphocyte detection on gastric cancer IHC images using deep learning
title Automatic lymphocyte detection on gastric cancer IHC images using deep learning
spellingShingle Automatic lymphocyte detection on gastric cancer IHC images using deep learning
García Ríos, Emilio Rafael
Cáncer
Gastroenterología
Aprendizaje automático (Inteligencia artificial)
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Automatic lymphocyte detection on gastric cancer IHC images using deep learning
title_full Automatic lymphocyte detection on gastric cancer IHC images using deep learning
title_fullStr Automatic lymphocyte detection on gastric cancer IHC images using deep learning
title_full_unstemmed Automatic lymphocyte detection on gastric cancer IHC images using deep learning
title_sort Automatic lymphocyte detection on gastric cancer IHC images using deep learning
author García Ríos, Emilio Rafael
author_facet García Ríos, Emilio Rafael
author_role author
dc.contributor.advisor.fl_str_mv Beltrán Castañón, César Armando
dc.contributor.author.fl_str_mv García Ríos, Emilio Rafael
dc.subject.es_ES.fl_str_mv Cáncer
Gastroenterología
Aprendizaje automático (Inteligencia artificial)
topic Cáncer
Gastroenterología
Aprendizaje automático (Inteligencia artificial)
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description Tumor-infiltrating lymphocytes (TILs) have received considerable attention in recent years, as evidence suggests they are related to cancer prognosis. Distribution and localization of these and other types of immune cells are of special interest for pathologists, and frequently involve manual examination on Immunohistochemistry (IHC) Images. We present a model based on Deep Convolutional Neural Networks for Automatic lymphocyte detection on IHC images of gastric cancer. The dataset created as part of this work is publicly available for future research.
publishDate 2017
dc.date.created.es_ES.fl_str_mv 2017
dc.date.accessioned.es_ES.fl_str_mv 2018-01-19T21:32:22Z
dc.date.available.es_ES.fl_str_mv 2018-01-19T21:32:22Z
dc.date.issued.fl_str_mv 2018-01-19
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/9905
url http://hdl.handle.net/20.500.12404/9905
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/417bee21-69ab-487e-947e-0c351799a79d/download
https://tesis.pucp.edu.pe/bitstreams/05add1df-fa55-42dc-9ebc-1a54f5374f5f/download
https://tesis.pucp.edu.pe/bitstreams/33429f4d-49b5-4cab-bff4-c8bb9312d3b0/download
https://tesis.pucp.edu.pe/bitstreams/a5ebb73a-0c2a-45e0-be4a-3d8c801eed60/download
bitstream.checksum.fl_str_mv 6253607306fe4d1b399b62088c6cd8ea
8a4605be74aa9ea9d79846c1fba20a33
273b6d7666e8d60b03cf92a907123d2a
57c8d8cde75e2a8c4ac5a76f7e7a7ca9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176259093921792
spelling Beltrán Castañón, César ArmandoGarcía Ríos, Emilio Rafael2018-01-19T21:32:22Z2018-01-19T21:32:22Z20172018-01-19http://hdl.handle.net/20.500.12404/9905Tumor-infiltrating lymphocytes (TILs) have received considerable attention in recent years, as evidence suggests they are related to cancer prognosis. Distribution and localization of these and other types of immune cells are of special interest for pathologists, and frequently involve manual examination on Immunohistochemistry (IHC) Images. We present a model based on Deep Convolutional Neural Networks for Automatic lymphocyte detection on IHC images of gastric cancer. The dataset created as part of this work is publicly available for future research.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/CáncerGastroenterologíaAprendizaje automático (Inteligencia artificial)https://purl.org/pe-repo/ocde/ford#1.02.00Automatic lymphocyte detection on gastric cancer IHC images using deep learninginfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática con mención en Ciencias de la Computación29561260https://orcid.org/0000-0002-0173-4140611087https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdfGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdfTexto completoapplication/pdf318220https://tesis.pucp.edu.pe/bitstreams/417bee21-69ab-487e-947e-0c351799a79d/download6253607306fe4d1b399b62088c6cd8eaMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/05add1df-fa55-42dc-9ebc-1a54f5374f5f/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTHUMBNAILGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.jpgGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.jpgIM Thumbnailimage/jpeg17424https://tesis.pucp.edu.pe/bitstreams/33429f4d-49b5-4cab-bff4-c8bb9312d3b0/download273b6d7666e8d60b03cf92a907123d2aMD53falseAnonymousREADTEXTGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.txtGARCÍA_EMILIO_LYMPHOCYTE_DETECTION_GASTRIC_CANCER.pdf.txtExtracted texttext/plain20963https://tesis.pucp.edu.pe/bitstreams/a5ebb73a-0c2a-45e0-be4a-3d8c801eed60/download57c8d8cde75e2a8c4ac5a76f7e7a7ca9MD54falseAnonymousREAD20.500.12404/9905oai:tesis.pucp.edu.pe:20.500.12404/99052025-07-18 12:53:35.271http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.413352
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).