Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP
Descripción del Articulo
En el presente trabajo, se estudian las propiedades del método de estimación no paramétrico en un modelo de “Enfermedad - Muerte" de proceso de Markov. Este modelo posee tres estados 1, 2 y 3 correspondientes a “salud", “enfermedad" y “muerte" respectivamente y solo admite las tr...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2010 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/1470 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/1470 |
| Nivel de acceso: | acceso abierto |
| Materia: | Estadística no paramétrica Modelos de Markov AFP. Estimación https://purl.org/pe-repo/ocde/ford#1.01.03 |
| id |
PUCP_ddf209c693ef3732743349bb300571c8 |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/1470 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP |
| title |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP |
| spellingShingle |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP Requena Espinoza, Genaro Estadística no paramétrica Modelos de Markov AFP. Estimación https://purl.org/pe-repo/ocde/ford#1.01.03 |
| title_short |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP |
| title_full |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP |
| title_fullStr |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP |
| title_full_unstemmed |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP |
| title_sort |
Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFP |
| author |
Requena Espinoza, Genaro |
| author_facet |
Requena Espinoza, Genaro |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Doig Camino, Elizabeth |
| dc.contributor.author.fl_str_mv |
Requena Espinoza, Genaro |
| dc.subject.es_ES.fl_str_mv |
Estadística no paramétrica Modelos de Markov AFP. Estimación |
| topic |
Estadística no paramétrica Modelos de Markov AFP. Estimación https://purl.org/pe-repo/ocde/ford#1.01.03 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.03 |
| description |
En el presente trabajo, se estudian las propiedades del método de estimación no paramétrico en un modelo de “Enfermedad - Muerte" de proceso de Markov. Este modelo posee tres estados 1, 2 y 3 correspondientes a “salud", “enfermedad" y “muerte" respectivamente y solo admite las transiciones de 1-2, 1-3 y 2-3, asimismo a este proceso se le denomina de Markov porque la probabilidad de transición de un estado a otro es independiente del tiempo de permanencia en el estado inicial. Las funciones de tiempo de muerte y enfermedad, así como la función de riesgo de muerte dada la enfermedad son los parámetros del modelo \Enfermedad - Muerte". Sin embargo la estimación de estas funciones del modelo no es directa pues existen dos formas de censura en los datos: los intervalos censurados y la pérdida de estados de transición; por lo que se utiliza un algoritmo de autoconsistencia para calcular estos estimadores. Los intervalos censurados y la pérdida de estados de transición se generan porque los pacientes son evaluados periódicamente. En un intervalo censurado (t1 , t2) se conoce que la enfermedad ocurrió entre un tiempo t1 y t2 pero no el momento exacto, mientras que para la pérdida de estados de transición se sabe que la enfermedad no ha ocurrido hasta la última medición pero se desconoce si la enfermedad ocurre entre esta última medición y el tiempo final del estudio. En la aplicación del modelo \Enfermedad - Muerte" de proceso de Markov a una base de clientes de una administradora de fondos de pensiones (AFP) se consideran los intervalos censurados para los reclamos de los clientes, as__ como la pérdida de estados de transición para los traspasos. Modelar los tiempos de traspaso y de reclamo de los afiliados bajo un proceso de Markov \Enfermedad - Muerte" con intervalos censurados y pérdida de estados de transición intermedia, aumenta la precisión de los estimadores de las funciones de tiempo y riesgo. |
| publishDate |
2010 |
| dc.date.created.es_ES.fl_str_mv |
2010 |
| dc.date.accessioned.es_ES.fl_str_mv |
2012-08-16T23:02:13Z |
| dc.date.available.es_ES.fl_str_mv |
2012-08-16T23:02:13Z |
| dc.date.issued.fl_str_mv |
2012-08-16 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/1470 |
| url |
http://hdl.handle.net/20.500.12404/1470 |
| dc.language.iso.es_ES.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/419f9ebf-23e8-4df6-be3a-d60da62b107f/download https://tesis.pucp.edu.pe/bitstreams/847d198c-34fc-425a-8477-688a9ca5edcf/download https://tesis.pucp.edu.pe/bitstreams/fb0fad83-fb8b-4b8f-8ff0-b4e688285048/download https://tesis.pucp.edu.pe/bitstreams/28656e10-e3b0-42f6-a850-5b7481d18cd9/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 53854771026dcc764ce817610e29cfda 0a596d81751d0642b9f1c468ba3d5e2c 078f303592277a80ad86cc8179105435 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1839177457489412096 |
| spelling |
Doig Camino, ElizabethRequena Espinoza, Genaro2012-08-16T23:02:13Z2012-08-16T23:02:13Z20102012-08-16http://hdl.handle.net/20.500.12404/1470En el presente trabajo, se estudian las propiedades del método de estimación no paramétrico en un modelo de “Enfermedad - Muerte" de proceso de Markov. Este modelo posee tres estados 1, 2 y 3 correspondientes a “salud", “enfermedad" y “muerte" respectivamente y solo admite las transiciones de 1-2, 1-3 y 2-3, asimismo a este proceso se le denomina de Markov porque la probabilidad de transición de un estado a otro es independiente del tiempo de permanencia en el estado inicial. Las funciones de tiempo de muerte y enfermedad, así como la función de riesgo de muerte dada la enfermedad son los parámetros del modelo \Enfermedad - Muerte". Sin embargo la estimación de estas funciones del modelo no es directa pues existen dos formas de censura en los datos: los intervalos censurados y la pérdida de estados de transición; por lo que se utiliza un algoritmo de autoconsistencia para calcular estos estimadores. Los intervalos censurados y la pérdida de estados de transición se generan porque los pacientes son evaluados periódicamente. En un intervalo censurado (t1 , t2) se conoce que la enfermedad ocurrió entre un tiempo t1 y t2 pero no el momento exacto, mientras que para la pérdida de estados de transición se sabe que la enfermedad no ha ocurrido hasta la última medición pero se desconoce si la enfermedad ocurre entre esta última medición y el tiempo final del estudio. En la aplicación del modelo \Enfermedad - Muerte" de proceso de Markov a una base de clientes de una administradora de fondos de pensiones (AFP) se consideran los intervalos censurados para los reclamos de los clientes, as__ como la pérdida de estados de transición para los traspasos. Modelar los tiempos de traspaso y de reclamo de los afiliados bajo un proceso de Markov \Enfermedad - Muerte" con intervalos censurados y pérdida de estados de transición intermedia, aumenta la precisión de los estimadores de las funciones de tiempo y riesgo.spaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Estadística no paramétricaModelos de MarkovAFP.Estimaciónhttps://purl.org/pe-repo/ocde/ford#1.01.03Estimación no paramétrica en un proceso de Markov "enfermedad-muerte" aplicado a una base de clientes de una AFPinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en EstadísticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoEstadística542037https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/419f9ebf-23e8-4df6-be3a-d60da62b107f/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADORIGINALREQUENA_ESPINOZA_GENARO_ESTIMACION_NO_PARAMETRICA_MARKOV.pdfREQUENA_ESPINOZA_GENARO_ESTIMACION_NO_PARAMETRICA_MARKOV.pdfapplication/pdf831909https://tesis.pucp.edu.pe/bitstreams/847d198c-34fc-425a-8477-688a9ca5edcf/download53854771026dcc764ce817610e29cfdaMD51trueAnonymousREADTEXTREQUENA_ESPINOZA_GENARO_ESTIMACION_NO_PARAMETRICA_MARKOV.pdf.txtREQUENA_ESPINOZA_GENARO_ESTIMACION_NO_PARAMETRICA_MARKOV.pdf.txtExtracted texttext/plain107815https://tesis.pucp.edu.pe/bitstreams/fb0fad83-fb8b-4b8f-8ff0-b4e688285048/download0a596d81751d0642b9f1c468ba3d5e2cMD55falseAnonymousREADTHUMBNAILREQUENA_ESPINOZA_GENARO_ESTIMACION_NO_PARAMETRICA_MARKOV.pdf.jpgREQUENA_ESPINOZA_GENARO_ESTIMACION_NO_PARAMETRICA_MARKOV.pdf.jpgIM Thumbnailimage/jpeg32035https://tesis.pucp.edu.pe/bitstreams/28656e10-e3b0-42f6-a850-5b7481d18cd9/download078f303592277a80ad86cc8179105435MD56falseAnonymousREAD20.500.12404/1470oai:tesis.pucp.edu.pe:20.500.12404/14702025-07-18 12:56:26.239http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.425424 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).