Foliaciones algebraicas unidimensionales determinadas únicamente por sus singularidades
Descripción del Articulo
Una foliación algebraica unidimensional Fα es aquella que es generada por un campo vectorial meromorfo α ∈ H0(Pn,ΘPn(1 − d)), donde d > 1 sobre el espacio proyectivo complejo Pn. En este trabajo estudiaremos cómo determinar las foliaciones holomorfas unidimensionales mediante sus singularidades u...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2024 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/27309 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/27309 |
Nivel de acceso: | acceso abierto |
Materia: | Foliaciones (Matemáticas) Geometría algebraica Singularidades (Matemáticas) https://purl.org/pe-repo/ocde/ford#1.01.00 |
Sumario: | Una foliación algebraica unidimensional Fα es aquella que es generada por un campo vectorial meromorfo α ∈ H0(Pn,ΘPn(1 − d)), donde d > 1 sobre el espacio proyectivo complejo Pn. En este trabajo estudiaremos cómo determinar las foliaciones holomorfas unidimensionales mediante sus singularidades usando la cohomología de haces asociadas a las foliaciones holomorfas. El trabajo está basado en la investigación desarrollada por Xavier Gómez-Mont y George Kempf en [GMK89]. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).