Solution of fractional linear and bilinear time invariant system via formal power series methods

Descripción del Articulo

The area of fractional calculus is more than three centuries old but applications have only appeared in the past few decades. Differential equations of non-integer order are known to represent certain physical processes in a more precise way than using the usual differential equations with integer o...

Descripción completa

Detalles Bibliográficos
Autor: Winter Arboleda, Irina Michelle
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/10179
Enlace del recurso:http://hdl.handle.net/20.500.12404/10179
Nivel de acceso:acceso abierto
Materia:Cálculo fraccional
Teoría del control
Sistemas lineales
https://purl.org/pe-repo/ocde/ford#1.01.00
id PUCP_ca89503804ec2ba1a1fb36b7c6f27cf3
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/10179
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Solution of fractional linear and bilinear time invariant system via formal power series methods
title Solution of fractional linear and bilinear time invariant system via formal power series methods
spellingShingle Solution of fractional linear and bilinear time invariant system via formal power series methods
Winter Arboleda, Irina Michelle
Cálculo fraccional
Teoría del control
Sistemas lineales
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Solution of fractional linear and bilinear time invariant system via formal power series methods
title_full Solution of fractional linear and bilinear time invariant system via formal power series methods
title_fullStr Solution of fractional linear and bilinear time invariant system via formal power series methods
title_full_unstemmed Solution of fractional linear and bilinear time invariant system via formal power series methods
title_sort Solution of fractional linear and bilinear time invariant system via formal power series methods
author Winter Arboleda, Irina Michelle
author_facet Winter Arboleda, Irina Michelle
author_role author
dc.contributor.advisor.fl_str_mv Chávez Fuentes, Jorge Richard
dc.contributor.author.fl_str_mv Winter Arboleda, Irina Michelle
dc.subject.es_ES.fl_str_mv Cálculo fraccional
Teoría del control
Sistemas lineales
topic Cálculo fraccional
Teoría del control
Sistemas lineales
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description The area of fractional calculus is more than three centuries old but applications have only appeared in the past few decades. Differential equations of non-integer order are known to represent certain physical processes in a more precise way than using the usual differential equations with integer order. Therefore, considering fractional calculus in the context of input- output systems can be beneficial. A useful representation of an input-output map in control theory is the Chen-Fliess functional series or Fliess operator. It can be viewed as a generalization of a Taylor series, and its algebraic nature is especially well suited for several important applications. In this thesis, a general solution for a fractional linear and bilinear time invariant system via formal power series methods and Fliess operators is presented. A mathematical model (that includes a differential equation) for an input-output linear and bilinear time invariant system is very well known, both the explicit solution and the one using formal power series. However, the question of how this system behaves when a fractional differential equation (where the derivative is of a non-integer order) has not been yet studied from the power series point of view. This thesis focuses on two specific kind of derivatives, one using Riemann-Liouville fractional derivatives and the other using Caputo fractional derivatives.
publishDate 2017
dc.date.created.es_ES.fl_str_mv 2017
dc.date.accessioned.es_ES.fl_str_mv 2018-02-20T17:15:06Z
dc.date.available.es_ES.fl_str_mv 2018-02-20T17:15:06Z
dc.date.issued.fl_str_mv 2018-02-20
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/10179
url http://hdl.handle.net/20.500.12404/10179
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/6b65465d-bc35-4dfb-a0c5-54ad96d59b1e/download
https://tesis.pucp.edu.pe/bitstreams/97d2c7c6-bbe6-479e-82a2-83889463d73a/download
https://tesis.pucp.edu.pe/bitstreams/de2ea7e9-4b41-4261-8ce0-390aaff3ea88/download
https://tesis.pucp.edu.pe/bitstreams/b6e0d44a-8108-4ea3-bd59-fa85811e223b/download
https://tesis.pucp.edu.pe/bitstreams/267e7223-e91f-477b-bed1-956815c4e148/download
bitstream.checksum.fl_str_mv bb8a0366350c5f110a8f37d6fb4c41fd
27aebf468cd68dc7eda8cba25fc5f3a8
8a4605be74aa9ea9d79846c1fba20a33
903844c8ad0a218e2d2a16397eca6a1f
19b19148f9153698aca3297af72b3747
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176875669192704
spelling Chávez Fuentes, Jorge RichardWinter Arboleda, Irina Michelle2018-02-20T17:15:06Z2018-02-20T17:15:06Z20172018-02-20http://hdl.handle.net/20.500.12404/10179The area of fractional calculus is more than three centuries old but applications have only appeared in the past few decades. Differential equations of non-integer order are known to represent certain physical processes in a more precise way than using the usual differential equations with integer order. Therefore, considering fractional calculus in the context of input- output systems can be beneficial. A useful representation of an input-output map in control theory is the Chen-Fliess functional series or Fliess operator. It can be viewed as a generalization of a Taylor series, and its algebraic nature is especially well suited for several important applications. In this thesis, a general solution for a fractional linear and bilinear time invariant system via formal power series methods and Fliess operators is presented. A mathematical model (that includes a differential equation) for an input-output linear and bilinear time invariant system is very well known, both the explicit solution and the one using formal power series. However, the question of how this system behaves when a fractional differential equation (where the derivative is of a non-integer order) has not been yet studied from the power series point of view. This thesis focuses on two specific kind of derivatives, one using Riemann-Liouville fractional derivatives and the other using Caputo fractional derivatives.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Cálculo fraccionalTeoría del controlSistemas linealeshttps://purl.org/pe-repo/ocde/ford#1.01.00Solution of fractional linear and bilinear time invariant system via formal power series methodsinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas06712639541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdfWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdfTexto completoapplication/pdf716009https://tesis.pucp.edu.pe/bitstreams/6b65465d-bc35-4dfb-a0c5-54ad96d59b1e/downloadbb8a0366350c5f110a8f37d6fb4c41fdMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://tesis.pucp.edu.pe/bitstreams/97d2c7c6-bbe6-479e-82a2-83889463d73a/download27aebf468cd68dc7eda8cba25fc5f3a8MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/de2ea7e9-4b41-4261-8ce0-390aaff3ea88/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.jpgWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.jpgIM Thumbnailimage/jpeg15086https://tesis.pucp.edu.pe/bitstreams/b6e0d44a-8108-4ea3-bd59-fa85811e223b/download903844c8ad0a218e2d2a16397eca6a1fMD54falseAnonymousREADTEXTWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.txtWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.txtExtracted texttext/plain100230https://tesis.pucp.edu.pe/bitstreams/267e7223-e91f-477b-bed1-956815c4e148/download19b19148f9153698aca3297af72b3747MD55falseAnonymousREAD20.500.12404/10179oai:tesis.pucp.edu.pe:20.500.12404/101792025-07-18 12:53:02.257http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.411704
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).