Solution of fractional linear and bilinear time invariant system via formal power series methods
Descripción del Articulo
The area of fractional calculus is more than three centuries old but applications have only appeared in the past few decades. Differential equations of non-integer order are known to represent certain physical processes in a more precise way than using the usual differential equations with integer o...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2017 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | inglés |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/10179 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/10179 |
| Nivel de acceso: | acceso abierto |
| Materia: | Cálculo fraccional Teoría del control Sistemas lineales https://purl.org/pe-repo/ocde/ford#1.01.00 |
| id |
PUCP_ca89503804ec2ba1a1fb36b7c6f27cf3 |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/10179 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Solution of fractional linear and bilinear time invariant system via formal power series methods |
| title |
Solution of fractional linear and bilinear time invariant system via formal power series methods |
| spellingShingle |
Solution of fractional linear and bilinear time invariant system via formal power series methods Winter Arboleda, Irina Michelle Cálculo fraccional Teoría del control Sistemas lineales https://purl.org/pe-repo/ocde/ford#1.01.00 |
| title_short |
Solution of fractional linear and bilinear time invariant system via formal power series methods |
| title_full |
Solution of fractional linear and bilinear time invariant system via formal power series methods |
| title_fullStr |
Solution of fractional linear and bilinear time invariant system via formal power series methods |
| title_full_unstemmed |
Solution of fractional linear and bilinear time invariant system via formal power series methods |
| title_sort |
Solution of fractional linear and bilinear time invariant system via formal power series methods |
| author |
Winter Arboleda, Irina Michelle |
| author_facet |
Winter Arboleda, Irina Michelle |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Chávez Fuentes, Jorge Richard |
| dc.contributor.author.fl_str_mv |
Winter Arboleda, Irina Michelle |
| dc.subject.es_ES.fl_str_mv |
Cálculo fraccional Teoría del control Sistemas lineales |
| topic |
Cálculo fraccional Teoría del control Sistemas lineales https://purl.org/pe-repo/ocde/ford#1.01.00 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
| description |
The area of fractional calculus is more than three centuries old but applications have only appeared in the past few decades. Differential equations of non-integer order are known to represent certain physical processes in a more precise way than using the usual differential equations with integer order. Therefore, considering fractional calculus in the context of input- output systems can be beneficial. A useful representation of an input-output map in control theory is the Chen-Fliess functional series or Fliess operator. It can be viewed as a generalization of a Taylor series, and its algebraic nature is especially well suited for several important applications. In this thesis, a general solution for a fractional linear and bilinear time invariant system via formal power series methods and Fliess operators is presented. A mathematical model (that includes a differential equation) for an input-output linear and bilinear time invariant system is very well known, both the explicit solution and the one using formal power series. However, the question of how this system behaves when a fractional differential equation (where the derivative is of a non-integer order) has not been yet studied from the power series point of view. This thesis focuses on two specific kind of derivatives, one using Riemann-Liouville fractional derivatives and the other using Caputo fractional derivatives. |
| publishDate |
2017 |
| dc.date.created.es_ES.fl_str_mv |
2017 |
| dc.date.accessioned.es_ES.fl_str_mv |
2018-02-20T17:15:06Z |
| dc.date.available.es_ES.fl_str_mv |
2018-02-20T17:15:06Z |
| dc.date.issued.fl_str_mv |
2018-02-20 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/10179 |
| url |
http://hdl.handle.net/20.500.12404/10179 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/6b65465d-bc35-4dfb-a0c5-54ad96d59b1e/download https://tesis.pucp.edu.pe/bitstreams/97d2c7c6-bbe6-479e-82a2-83889463d73a/download https://tesis.pucp.edu.pe/bitstreams/de2ea7e9-4b41-4261-8ce0-390aaff3ea88/download https://tesis.pucp.edu.pe/bitstreams/b6e0d44a-8108-4ea3-bd59-fa85811e223b/download https://tesis.pucp.edu.pe/bitstreams/267e7223-e91f-477b-bed1-956815c4e148/download |
| bitstream.checksum.fl_str_mv |
bb8a0366350c5f110a8f37d6fb4c41fd 27aebf468cd68dc7eda8cba25fc5f3a8 8a4605be74aa9ea9d79846c1fba20a33 903844c8ad0a218e2d2a16397eca6a1f 19b19148f9153698aca3297af72b3747 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1839176875669192704 |
| spelling |
Chávez Fuentes, Jorge RichardWinter Arboleda, Irina Michelle2018-02-20T17:15:06Z2018-02-20T17:15:06Z20172018-02-20http://hdl.handle.net/20.500.12404/10179The area of fractional calculus is more than three centuries old but applications have only appeared in the past few decades. Differential equations of non-integer order are known to represent certain physical processes in a more precise way than using the usual differential equations with integer order. Therefore, considering fractional calculus in the context of input- output systems can be beneficial. A useful representation of an input-output map in control theory is the Chen-Fliess functional series or Fliess operator. It can be viewed as a generalization of a Taylor series, and its algebraic nature is especially well suited for several important applications. In this thesis, a general solution for a fractional linear and bilinear time invariant system via formal power series methods and Fliess operators is presented. A mathematical model (that includes a differential equation) for an input-output linear and bilinear time invariant system is very well known, both the explicit solution and the one using formal power series. However, the question of how this system behaves when a fractional differential equation (where the derivative is of a non-integer order) has not been yet studied from the power series point of view. This thesis focuses on two specific kind of derivatives, one using Riemann-Liouville fractional derivatives and the other using Caputo fractional derivatives.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Cálculo fraccionalTeoría del controlSistemas linealeshttps://purl.org/pe-repo/ocde/ford#1.01.00Solution of fractional linear and bilinear time invariant system via formal power series methodsinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas06712639541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdfWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdfTexto completoapplication/pdf716009https://tesis.pucp.edu.pe/bitstreams/6b65465d-bc35-4dfb-a0c5-54ad96d59b1e/downloadbb8a0366350c5f110a8f37d6fb4c41fdMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://tesis.pucp.edu.pe/bitstreams/97d2c7c6-bbe6-479e-82a2-83889463d73a/download27aebf468cd68dc7eda8cba25fc5f3a8MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/de2ea7e9-4b41-4261-8ce0-390aaff3ea88/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.jpgWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.jpgIM Thumbnailimage/jpeg15086https://tesis.pucp.edu.pe/bitstreams/b6e0d44a-8108-4ea3-bd59-fa85811e223b/download903844c8ad0a218e2d2a16397eca6a1fMD54falseAnonymousREADTEXTWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.txtWINTER_ARBOLEDA_SOLUTION_FRACTIONAL.pdf.txtExtracted texttext/plain100230https://tesis.pucp.edu.pe/bitstreams/267e7223-e91f-477b-bed1-956815c4e148/download19b19148f9153698aca3297af72b3747MD55falseAnonymousREAD20.500.12404/10179oai:tesis.pucp.edu.pe:20.500.12404/101792025-07-18 12:53:02.257http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.411704 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).