Autonomous control of a mobile robot with incremental deep learning neural networks

Descripción del Articulo

Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by th...

Descripción completa

Detalles Bibliográficos
Autor: Glöde, Isabella
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/18676
Enlace del recurso:http://hdl.handle.net/20.500.12404/18676
Nivel de acceso:acceso abierto
Materia:Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.02.03
id PUCP_c18416d34f8861ff052629380d06368e
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/18676
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Autonomous control of a mobile robot with incremental deep learning neural networks
title Autonomous control of a mobile robot with incremental deep learning neural networks
spellingShingle Autonomous control of a mobile robot with incremental deep learning neural networks
Glöde, Isabella
Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Autonomous control of a mobile robot with incremental deep learning neural networks
title_full Autonomous control of a mobile robot with incremental deep learning neural networks
title_fullStr Autonomous control of a mobile robot with incremental deep learning neural networks
title_full_unstemmed Autonomous control of a mobile robot with incremental deep learning neural networks
title_sort Autonomous control of a mobile robot with incremental deep learning neural networks
author Glöde, Isabella
author_facet Glöde, Isabella
author_role author
dc.contributor.advisor.fl_str_mv Morán Cárdenas, Antonio Manuel
dc.contributor.author.fl_str_mv Glöde, Isabella
dc.subject.es_ES.fl_str_mv Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
topic Control automático--Robots móviles
Aprendizaje profundo
Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by these algorithms and their subsequent performance must be found to fulfil production requirements. In this thesis incremental deep learning strategies are used for the control of a mobile robot such as a four wheel steering vehicle. This strategy is similar to the human approach of learning. In many small steps the vehicle learns to achieve a specific goal. The usage of incremental training leads to growing knowledge-base within the system. It also provides the opportunity to use older training achievements to improve the system, when more training data is available. To demonstrate the capabilities of such an algorithm, two different models have been formulated. First, a more simple model with counter wheel steering, and second, a more complex, nonlinear model with independent steering. These two models are trained incrementally to follow different types of trajectories. Therefore an algorithm was established to generate useful initial points. The incremental steps allow the robot to be positioned further and further away from the desired trajectory in the environ- ment. Afterwards, the effects of different trajectory types on model behaviour are investigated by over one thousand simulation runs. To do this, path planning for straight lines and circles are introduced. This work demonstrates that even simulations with simple network structures can have high performance.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-29T20:39:40Z
dc.date.available.none.fl_str_mv 2021-03-29T20:39:40Z
dc.date.created.none.fl_str_mv 2021
dc.date.issued.fl_str_mv 2021-03-29
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/18676
url http://hdl.handle.net/20.500.12404/18676
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/9233cda4-56c0-41c9-8842-12a50c163ee8/download
https://tesis.pucp.edu.pe/bitstreams/68db5772-e1f0-425c-9d64-d1e43bd42501/download
https://tesis.pucp.edu.pe/bitstreams/bf7f9d20-3fae-4ea9-9463-c07fee84e7d8/download
https://tesis.pucp.edu.pe/bitstreams/6dd8606f-2527-4cf6-9195-2c9d1eb9eb9d/download
https://tesis.pucp.edu.pe/bitstreams/4777acca-8a0d-4530-9f49-c61005a59094/download
bitstream.checksum.fl_str_mv 5a4ffbc01f1b5eb70a835dac0d501661
20b32cbee10027f9aee600b8d10e351a
8a4605be74aa9ea9d79846c1fba20a33
07db4f609b811e76be9756a37695e84d
f3bdd956a78be7fcdd66c85e434eed22
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839177046009315328
spelling Morán Cárdenas, Antonio ManuelGlöde, Isabella2021-03-29T20:39:40Z2021-03-29T20:39:40Z20212021-03-29http://hdl.handle.net/20.500.12404/18676Over the last few years autonomous driving had an increasingly strong impact on the automotive industry. This created an increased need for artificial intelligence algo- rithms which allow for computers to make human-like decisions. However, a compro- mise between the computational power drawn by these algorithms and their subsequent performance must be found to fulfil production requirements. In this thesis incremental deep learning strategies are used for the control of a mobile robot such as a four wheel steering vehicle. This strategy is similar to the human approach of learning. In many small steps the vehicle learns to achieve a specific goal. The usage of incremental training leads to growing knowledge-base within the system. It also provides the opportunity to use older training achievements to improve the system, when more training data is available. To demonstrate the capabilities of such an algorithm, two different models have been formulated. First, a more simple model with counter wheel steering, and second, a more complex, nonlinear model with independent steering. These two models are trained incrementally to follow different types of trajectories. Therefore an algorithm was established to generate useful initial points. The incremental steps allow the robot to be positioned further and further away from the desired trajectory in the environ- ment. Afterwards, the effects of different trajectory types on model behaviour are investigated by over one thousand simulation runs. To do this, path planning for straight lines and circles are introduced. This work demonstrates that even simulations with simple network structures can have high performance.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Control automático--Robots móvilesAprendizaje profundoRedes neuronaleshttps://purl.org/pe-repo/ocde/ford#2.02.03Autonomous control of a mobile robot with incremental deep learning neural networksinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización10573987https://orcid.org/0000-0001-9059-1446CHLR78009712037Reger, JohannMorán Cárdenas, Antonio ManuelEnciso Salas, Luis Miguelhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://tesis.pucp.edu.pe/bitstreams/9233cda4-56c0-41c9-8842-12a50c163ee8/download5a4ffbc01f1b5eb70a835dac0d501661MD52falseAnonymousREADORIGINALGLODE_ISABELLA_AUTONOMOUS_CONTROL_MOBILE.pdfGLODE_ISABELLA_AUTONOMOUS_CONTROL_MOBILE.pdfTexto completoapplication/pdf3201079https://tesis.pucp.edu.pe/bitstreams/68db5772-e1f0-425c-9d64-d1e43bd42501/download20b32cbee10027f9aee600b8d10e351aMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/bf7f9d20-3fae-4ea9-9463-c07fee84e7d8/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILGLODE_ISABELLA_AUTONOMOUS_CONTROL_MOBILE.pdf.jpgGLODE_ISABELLA_AUTONOMOUS_CONTROL_MOBILE.pdf.jpgIM Thumbnailimage/jpeg24173https://tesis.pucp.edu.pe/bitstreams/6dd8606f-2527-4cf6-9195-2c9d1eb9eb9d/download07db4f609b811e76be9756a37695e84dMD54falseAnonymousREADTEXTGLODE_ISABELLA_AUTONOMOUS_CONTROL_MOBILE.pdf.txtGLODE_ISABELLA_AUTONOMOUS_CONTROL_MOBILE.pdf.txtExtracted texttext/plain134474https://tesis.pucp.edu.pe/bitstreams/4777acca-8a0d-4530-9f49-c61005a59094/downloadf3bdd956a78be7fcdd66c85e434eed22MD55falseAnonymousREAD20.500.12404/18676oai:tesis.pucp.edu.pe:20.500.12404/186762025-07-18 18:25:19.836http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.425424
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).