Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
Descripción del Articulo
Convolutional sparse representations and convolutional dictionary learning are mathematical models that consist in representing a whole signal or image as a sum of convolutions between dictionary filters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receivi...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2019 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | inglés |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/13903 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/13903 |
Nivel de acceso: | acceso abierto |
Materia: | Visión por computadoras Aprendizaje automático (Inteligencia artificial) https://purl.org/pe-repo/ocde/ford#2.02.05 |
id |
PUCP_a3726de9869d253cdb024489fa3f23ec |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/13903 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient |
title |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient |
spellingShingle |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient Silva Obregón, Gustavo Manuel Visión por computadoras Aprendizaje automático (Inteligencia artificial) https://purl.org/pe-repo/ocde/ford#2.02.05 |
title_short |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient |
title_full |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient |
title_fullStr |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient |
title_full_unstemmed |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient |
title_sort |
Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient |
author |
Silva Obregón, Gustavo Manuel |
author_facet |
Silva Obregón, Gustavo Manuel |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Rodríguez Valderrama, Paul Antonio |
dc.contributor.author.fl_str_mv |
Silva Obregón, Gustavo Manuel |
dc.subject.es_ES.fl_str_mv |
Visión por computadoras Aprendizaje automático (Inteligencia artificial) |
topic |
Visión por computadoras Aprendizaje automático (Inteligencia artificial) https://purl.org/pe-repo/ocde/ford#2.02.05 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.05 |
description |
Convolutional sparse representations and convolutional dictionary learning are mathematical models that consist in representing a whole signal or image as a sum of convolutions between dictionary filters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receiving an increase attention in multiple image processing tasks, since they do not present the usual patchwise drawbacks such as redundancy, multi-evaluations and non-translational invariant. Particularly, the convolutional dictionary learning (CDL) problem is addressed as an alternating minimization between coefficient update and dictionary update stages. A wide number of different algorithms based on FISTA (Fast Iterative Shrinkage-Thresholding Algorithm), ADMM (Alternating Direction Method of Multipliers) and ADMM consensus frameworks have been proposed to efficiently solve the most expensive steps of the CDL problem in the frequency domain. However, the use of the existing methods on large sets of images is computationally restricted by the dictionary update stage. The present thesis report is strategically organized in three parts. On the first part, we introduce the general topic of the CDL problem and the state-of-the-art methods used to deal with each stage. On the second part, we propose our first computationally efficient method to solve the entire CDL problem using the Accelerated Proximal Gradient (APG) framework in both updates. Additionally, a novel update model reminiscent of the Block Gauss-Seidel (BGS) method is incorporated to reduce the number of estimated components during the coefficient update. On the final part, we propose another alternative method to address the dictionary update stage based on APG consensus approach. This last method considers particular strategies of theADMMconsensus and our first APG framework to develop a less complex solution decoupled across the training images. In general, due to the lower number of operations, our first approach is a better serial option while our last approach has as advantage its independent and highly parallelizable structure. Finally, in our first set of experimental results, which is composed of serial implementations, we show that our first APG approach provides significant speedup with respect to the standard methods by a factor of 1:6 5:3. A complementary improvement by a factor of 2 is achieved by using the reminiscent BGS model. On the other hand, we also report that the second APG approach is the fastest method compared to the state-of-the-art consensus algorithm implemented in serial and parallel. Both proposed methods maintain comparable performance as the other ones in terms of reconstruction metrics, such as PSNR, SSIM and sparsity, in denoising and inpainting tasks. |
publishDate |
2019 |
dc.date.accessioned.es_ES.fl_str_mv |
2019-04-06T00:44:28Z |
dc.date.available.none.fl_str_mv |
2019-04-06T00:44:28Z |
dc.date.available.es_ES.fl_str_mv |
2019-04-06T00:44:28Z |
dc.date.created.es_ES.fl_str_mv |
2019 |
dc.date.issued.fl_str_mv |
2019-04-05 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/13903 |
url |
http://hdl.handle.net/20.500.12404/13903 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/2ad4a55f-9724-43e3-ab9d-a9f6b4d61643/download https://tesis.pucp.edu.pe/bitstreams/536aa145-f4a3-4c43-8a04-fe86dd7bc0ef/download https://tesis.pucp.edu.pe/bitstreams/f67fc1f2-11cc-4e57-84b2-52ec32047f16/download https://tesis.pucp.edu.pe/bitstreams/cca28658-7e9a-4d12-855c-071a0bd05d67/download https://tesis.pucp.edu.pe/bitstreams/a007f8da-ed3f-400d-8dd1-6f35be1374ab/download |
bitstream.checksum.fl_str_mv |
aa7b920b2d9313eada321dee4e85f86b 571d7f90347e4384d4463993bf0da63c 35481b2c8d414f16a5a053be5878fdb5 bb0bb51c1e6d82b9ac179bee72bc9b46 9a89877ded3ef6d857bef02fdbe72cd9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1834737054484791296 |
spelling |
Rodríguez Valderrama, Paul AntonioSilva Obregón, Gustavo Manuel2019-04-06T00:44:28Z2019-04-06T00:44:28Z2019-04-06T00:44:28Z20192019-04-05http://hdl.handle.net/20.500.12404/13903Convolutional sparse representations and convolutional dictionary learning are mathematical models that consist in representing a whole signal or image as a sum of convolutions between dictionary filters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receiving an increase attention in multiple image processing tasks, since they do not present the usual patchwise drawbacks such as redundancy, multi-evaluations and non-translational invariant. Particularly, the convolutional dictionary learning (CDL) problem is addressed as an alternating minimization between coefficient update and dictionary update stages. A wide number of different algorithms based on FISTA (Fast Iterative Shrinkage-Thresholding Algorithm), ADMM (Alternating Direction Method of Multipliers) and ADMM consensus frameworks have been proposed to efficiently solve the most expensive steps of the CDL problem in the frequency domain. However, the use of the existing methods on large sets of images is computationally restricted by the dictionary update stage. The present thesis report is strategically organized in three parts. On the first part, we introduce the general topic of the CDL problem and the state-of-the-art methods used to deal with each stage. On the second part, we propose our first computationally efficient method to solve the entire CDL problem using the Accelerated Proximal Gradient (APG) framework in both updates. Additionally, a novel update model reminiscent of the Block Gauss-Seidel (BGS) method is incorporated to reduce the number of estimated components during the coefficient update. On the final part, we propose another alternative method to address the dictionary update stage based on APG consensus approach. This last method considers particular strategies of theADMMconsensus and our first APG framework to develop a less complex solution decoupled across the training images. In general, due to the lower number of operations, our first approach is a better serial option while our last approach has as advantage its independent and highly parallelizable structure. Finally, in our first set of experimental results, which is composed of serial implementations, we show that our first APG approach provides significant speedup with respect to the standard methods by a factor of 1:6 5:3. A complementary improvement by a factor of 2 is achieved by using the reminiscent BGS model. On the other hand, we also report that the second APG approach is the fastest method compared to the state-of-the-art consensus algorithm implemented in serial and parallel. Both proposed methods maintain comparable performance as the other ones in terms of reconstruction metrics, such as PSNR, SSIM and sparsity, in denoising and inpainting tasks.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Visión por computadorasAprendizaje automático (Inteligencia artificial)https://purl.org/pe-repo/ocde/ford#2.02.05Efficient algorithms for convolutional dictionary learning via accelerated proximal gradientinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALSILVA_OBREGON_GUSTAVO_MANUEL.pdfSILVA_OBREGON_GUSTAVO_MANUEL.pdfTexto completoapplication/pdf758835https://tesis.pucp.edu.pe/bitstreams/2ad4a55f-9724-43e3-ab9d-a9f6b4d61643/downloadaa7b920b2d9313eada321dee4e85f86bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8913https://tesis.pucp.edu.pe/bitstreams/536aa145-f4a3-4c43-8a04-fe86dd7bc0ef/download571d7f90347e4384d4463993bf0da63cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81650https://tesis.pucp.edu.pe/bitstreams/f67fc1f2-11cc-4e57-84b2-52ec32047f16/download35481b2c8d414f16a5a053be5878fdb5MD53falseAnonymousREADTHUMBNAILSILVA_OBREGON_GUSTAVO_MANUEL.pdf.jpgSILVA_OBREGON_GUSTAVO_MANUEL.pdf.jpgIM Thumbnailimage/jpeg13172https://tesis.pucp.edu.pe/bitstreams/cca28658-7e9a-4d12-855c-071a0bd05d67/downloadbb0bb51c1e6d82b9ac179bee72bc9b46MD54falseAnonymousREADTEXTSILVA_OBREGON_GUSTAVO_MANUEL.pdf.txtSILVA_OBREGON_GUSTAVO_MANUEL.pdf.txtExtracted texttext/plain69337https://tesis.pucp.edu.pe/bitstreams/a007f8da-ed3f-400d-8dd1-6f35be1374ab/download9a89877ded3ef6d857bef02fdbe72cd9MD55falseAnonymousREAD20.500.12404/13903oai:tesis.pucp.edu.pe:20.500.12404/139032024-12-03 12:10:57.448http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTElDRU5DSUEgRVNUw4FOREFSCgpCYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcywgYXV0b3Jpem8gZWwgZGVww7NzaXRvIGRlIG1pIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLiAKCkNvbiBsYSBhdXRvcml6YWNpw7NuIGRlIGRlcMOzc2l0byBkZSBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbyB0cmFuc2Zvcm1hciAow7puaWNhbWVudGUgbWVkaWFudGUgc3UgdHJhZHVjY2nDs24gYSBvdHJvcyBpZGlvbWFzKSB5IHBvbmVyIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIChpbmNsdWlkbyBlbCByZXN1bWVuKSwgZW4gZm9ybWF0byBmw61zaWNvIG8gZGlnaXRhbCwgZW4gY3VhbHF1aWVyIG1lZGlvLCBjb25vY2lkbyBwb3IgY29ub2NlcnNlLCBhIHRyYXbDqXMgZGUgbG9zIGRpdmVyc29zIHNlcnZpY2lvcyBwcm92aXN0b3MgcG9yIGxhIFVuaXZlcnNpZGFkLCBjcmVhZG9zIG8gcG9yIGNyZWFyc2UsIHRhbGVzIGNvbW8gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLCBjb2xlY2Npw7NuIGRlIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuLCBlbnRyZSBvdHJvcywgZW4gZWwgUGVyw7ogeSBlbiBlbCBleHRyYW5qZXJvLCBwb3IgZWwgdGllbXBvIHkgdmVjZXMgcXVlIGNvbnNpZGVyZSBuZWNlc2FyaWFzLCB5IGxpYnJlIGRlIHJlbXVuZXJhY2lvbmVzLiBFbiB2aXJ0dWQgZGUgZGljaGEgbGljZW5jaWEsIGxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBwb2Ryw6EgcmVwcm9kdWNpciBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGVuIGN1YWxxdWllciB0aXBvIGRlIHNvcG9ydGUgeSBlbiBtw6FzIGRlIHVuIGVqZW1wbGFyLCBzaW4gbW9kaWZpY2FyIHN1IGNvbnRlbmlkbywgc29sbyBjb24gcHJvcMOzc2l0b3MgZGUgc2VndXJpZGFkLCByZXNwYWxkbyB5IHByZXNlcnZhY2nDs24uIERlY2xhcm8gcXVlIGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZXMgdW5hIGNyZWFjacOzbiBkZSBtaSBhdXRvcsOtYSB5IGV4Y2x1c2l2YSB0aXR1bGFyaWRhZCwgbyBjby1hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sIGdhcmFudGl6byBxdWUgZGljaG8gdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiBubyBpbmZyaW5nZSBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJhcyBwZXJzb25hcy4gTGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBDYXTDs2xpY2EgZGVsIFBlcsO6IGNvbnNpZ25hcsOhIGVsIG5vbWJyZSBkZWwvIGxvcyBhdXRvci9lcyBkZWwgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiwgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgoK |
score |
13.887739 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).