Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient

Descripción del Articulo

Convolutional sparse representations and convolutional dictionary learning are mathematical models that consist in representing a whole signal or image as a sum of convolutions between dictionary filters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receivi...

Descripción completa

Detalles Bibliográficos
Autor: Silva Obregón, Gustavo Manuel
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/13903
Enlace del recurso:http://hdl.handle.net/20.500.12404/13903
Nivel de acceso:acceso abierto
Materia:Visión por computadoras
Aprendizaje automático (Inteligencia artificial)
https://purl.org/pe-repo/ocde/ford#2.02.05
id PUCP_a3726de9869d253cdb024489fa3f23ec
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/13903
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
title Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
spellingShingle Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
Silva Obregón, Gustavo Manuel
Visión por computadoras
Aprendizaje automático (Inteligencia artificial)
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
title_full Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
title_fullStr Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
title_full_unstemmed Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
title_sort Efficient algorithms for convolutional dictionary learning via accelerated proximal gradient
author Silva Obregón, Gustavo Manuel
author_facet Silva Obregón, Gustavo Manuel
author_role author
dc.contributor.advisor.fl_str_mv Rodríguez Valderrama, Paul Antonio
dc.contributor.author.fl_str_mv Silva Obregón, Gustavo Manuel
dc.subject.es_ES.fl_str_mv Visión por computadoras
Aprendizaje automático (Inteligencia artificial)
topic Visión por computadoras
Aprendizaje automático (Inteligencia artificial)
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description Convolutional sparse representations and convolutional dictionary learning are mathematical models that consist in representing a whole signal or image as a sum of convolutions between dictionary filters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receiving an increase attention in multiple image processing tasks, since they do not present the usual patchwise drawbacks such as redundancy, multi-evaluations and non-translational invariant. Particularly, the convolutional dictionary learning (CDL) problem is addressed as an alternating minimization between coefficient update and dictionary update stages. A wide number of different algorithms based on FISTA (Fast Iterative Shrinkage-Thresholding Algorithm), ADMM (Alternating Direction Method of Multipliers) and ADMM consensus frameworks have been proposed to efficiently solve the most expensive steps of the CDL problem in the frequency domain. However, the use of the existing methods on large sets of images is computationally restricted by the dictionary update stage. The present thesis report is strategically organized in three parts. On the first part, we introduce the general topic of the CDL problem and the state-of-the-art methods used to deal with each stage. On the second part, we propose our first computationally efficient method to solve the entire CDL problem using the Accelerated Proximal Gradient (APG) framework in both updates. Additionally, a novel update model reminiscent of the Block Gauss-Seidel (BGS) method is incorporated to reduce the number of estimated components during the coefficient update. On the final part, we propose another alternative method to address the dictionary update stage based on APG consensus approach. This last method considers particular strategies of theADMMconsensus and our first APG framework to develop a less complex solution decoupled across the training images. In general, due to the lower number of operations, our first approach is a better serial option while our last approach has as advantage its independent and highly parallelizable structure. Finally, in our first set of experimental results, which is composed of serial implementations, we show that our first APG approach provides significant speedup with respect to the standard methods by a factor of 1:6 5:3. A complementary improvement by a factor of 2 is achieved by using the reminiscent BGS model. On the other hand, we also report that the second APG approach is the fastest method compared to the state-of-the-art consensus algorithm implemented in serial and parallel. Both proposed methods maintain comparable performance as the other ones in terms of reconstruction metrics, such as PSNR, SSIM and sparsity, in denoising and inpainting tasks.
publishDate 2019
dc.date.accessioned.es_ES.fl_str_mv 2019-04-06T00:44:28Z
dc.date.available.none.fl_str_mv 2019-04-06T00:44:28Z
dc.date.available.es_ES.fl_str_mv 2019-04-06T00:44:28Z
dc.date.created.es_ES.fl_str_mv 2019
dc.date.issued.fl_str_mv 2019-04-05
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/13903
url http://hdl.handle.net/20.500.12404/13903
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/2ad4a55f-9724-43e3-ab9d-a9f6b4d61643/download
https://tesis.pucp.edu.pe/bitstreams/536aa145-f4a3-4c43-8a04-fe86dd7bc0ef/download
https://tesis.pucp.edu.pe/bitstreams/f67fc1f2-11cc-4e57-84b2-52ec32047f16/download
https://tesis.pucp.edu.pe/bitstreams/cca28658-7e9a-4d12-855c-071a0bd05d67/download
https://tesis.pucp.edu.pe/bitstreams/a007f8da-ed3f-400d-8dd1-6f35be1374ab/download
bitstream.checksum.fl_str_mv aa7b920b2d9313eada321dee4e85f86b
571d7f90347e4384d4463993bf0da63c
35481b2c8d414f16a5a053be5878fdb5
bb0bb51c1e6d82b9ac179bee72bc9b46
9a89877ded3ef6d857bef02fdbe72cd9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834737054484791296
spelling Rodríguez Valderrama, Paul AntonioSilva Obregón, Gustavo Manuel2019-04-06T00:44:28Z2019-04-06T00:44:28Z2019-04-06T00:44:28Z20192019-04-05http://hdl.handle.net/20.500.12404/13903Convolutional sparse representations and convolutional dictionary learning are mathematical models that consist in representing a whole signal or image as a sum of convolutions between dictionary filters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receiving an increase attention in multiple image processing tasks, since they do not present the usual patchwise drawbacks such as redundancy, multi-evaluations and non-translational invariant. Particularly, the convolutional dictionary learning (CDL) problem is addressed as an alternating minimization between coefficient update and dictionary update stages. A wide number of different algorithms based on FISTA (Fast Iterative Shrinkage-Thresholding Algorithm), ADMM (Alternating Direction Method of Multipliers) and ADMM consensus frameworks have been proposed to efficiently solve the most expensive steps of the CDL problem in the frequency domain. However, the use of the existing methods on large sets of images is computationally restricted by the dictionary update stage. The present thesis report is strategically organized in three parts. On the first part, we introduce the general topic of the CDL problem and the state-of-the-art methods used to deal with each stage. On the second part, we propose our first computationally efficient method to solve the entire CDL problem using the Accelerated Proximal Gradient (APG) framework in both updates. Additionally, a novel update model reminiscent of the Block Gauss-Seidel (BGS) method is incorporated to reduce the number of estimated components during the coefficient update. On the final part, we propose another alternative method to address the dictionary update stage based on APG consensus approach. This last method considers particular strategies of theADMMconsensus and our first APG framework to develop a less complex solution decoupled across the training images. In general, due to the lower number of operations, our first approach is a better serial option while our last approach has as advantage its independent and highly parallelizable structure. Finally, in our first set of experimental results, which is composed of serial implementations, we show that our first APG approach provides significant speedup with respect to the standard methods by a factor of 1:6 5:3. A complementary improvement by a factor of 2 is achieved by using the reminiscent BGS model. On the other hand, we also report that the second APG approach is the fastest method compared to the state-of-the-art consensus algorithm implemented in serial and parallel. Both proposed methods maintain comparable performance as the other ones in terms of reconstruction metrics, such as PSNR, SSIM and sparsity, in denoising and inpainting tasks.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Visión por computadorasAprendizaje automático (Inteligencia artificial)https://purl.org/pe-repo/ocde/ford#2.02.05Efficient algorithms for convolutional dictionary learning via accelerated proximal gradientinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALSILVA_OBREGON_GUSTAVO_MANUEL.pdfSILVA_OBREGON_GUSTAVO_MANUEL.pdfTexto completoapplication/pdf758835https://tesis.pucp.edu.pe/bitstreams/2ad4a55f-9724-43e3-ab9d-a9f6b4d61643/downloadaa7b920b2d9313eada321dee4e85f86bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8913https://tesis.pucp.edu.pe/bitstreams/536aa145-f4a3-4c43-8a04-fe86dd7bc0ef/download571d7f90347e4384d4463993bf0da63cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81650https://tesis.pucp.edu.pe/bitstreams/f67fc1f2-11cc-4e57-84b2-52ec32047f16/download35481b2c8d414f16a5a053be5878fdb5MD53falseAnonymousREADTHUMBNAILSILVA_OBREGON_GUSTAVO_MANUEL.pdf.jpgSILVA_OBREGON_GUSTAVO_MANUEL.pdf.jpgIM Thumbnailimage/jpeg13172https://tesis.pucp.edu.pe/bitstreams/cca28658-7e9a-4d12-855c-071a0bd05d67/downloadbb0bb51c1e6d82b9ac179bee72bc9b46MD54falseAnonymousREADTEXTSILVA_OBREGON_GUSTAVO_MANUEL.pdf.txtSILVA_OBREGON_GUSTAVO_MANUEL.pdf.txtExtracted texttext/plain69337https://tesis.pucp.edu.pe/bitstreams/a007f8da-ed3f-400d-8dd1-6f35be1374ab/download9a89877ded3ef6d857bef02fdbe72cd9MD55falseAnonymousREAD20.500.12404/13903oai:tesis.pucp.edu.pe:20.500.12404/139032024-12-03 12:10:57.448http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTElDRU5DSUEgRVNUw4FOREFSCgpCYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcywgYXV0b3Jpem8gZWwgZGVww7NzaXRvIGRlIG1pIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLiAKCkNvbiBsYSBhdXRvcml6YWNpw7NuIGRlIGRlcMOzc2l0byBkZSBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbyB0cmFuc2Zvcm1hciAow7puaWNhbWVudGUgbWVkaWFudGUgc3UgdHJhZHVjY2nDs24gYSBvdHJvcyBpZGlvbWFzKSB5IHBvbmVyIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIChpbmNsdWlkbyBlbCByZXN1bWVuKSwgZW4gZm9ybWF0byBmw61zaWNvIG8gZGlnaXRhbCwgZW4gY3VhbHF1aWVyIG1lZGlvLCBjb25vY2lkbyBwb3IgY29ub2NlcnNlLCBhIHRyYXbDqXMgZGUgbG9zIGRpdmVyc29zIHNlcnZpY2lvcyBwcm92aXN0b3MgcG9yIGxhIFVuaXZlcnNpZGFkLCBjcmVhZG9zIG8gcG9yIGNyZWFyc2UsIHRhbGVzIGNvbW8gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLCBjb2xlY2Npw7NuIGRlIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuLCBlbnRyZSBvdHJvcywgZW4gZWwgUGVyw7ogeSBlbiBlbCBleHRyYW5qZXJvLCBwb3IgZWwgdGllbXBvIHkgdmVjZXMgcXVlIGNvbnNpZGVyZSBuZWNlc2FyaWFzLCB5IGxpYnJlIGRlIHJlbXVuZXJhY2lvbmVzLiBFbiB2aXJ0dWQgZGUgZGljaGEgbGljZW5jaWEsIGxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBwb2Ryw6EgcmVwcm9kdWNpciBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGVuIGN1YWxxdWllciB0aXBvIGRlIHNvcG9ydGUgeSBlbiBtw6FzIGRlIHVuIGVqZW1wbGFyLCBzaW4gbW9kaWZpY2FyIHN1IGNvbnRlbmlkbywgc29sbyBjb24gcHJvcMOzc2l0b3MgZGUgc2VndXJpZGFkLCByZXNwYWxkbyB5IHByZXNlcnZhY2nDs24uIERlY2xhcm8gcXVlIGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZXMgdW5hIGNyZWFjacOzbiBkZSBtaSBhdXRvcsOtYSB5IGV4Y2x1c2l2YSB0aXR1bGFyaWRhZCwgbyBjby1hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sIGdhcmFudGl6byBxdWUgZGljaG8gdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiBubyBpbmZyaW5nZSBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJhcyBwZXJzb25hcy4gTGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBDYXTDs2xpY2EgZGVsIFBlcsO6IGNvbnNpZ25hcsOhIGVsIG5vbWJyZSBkZWwvIGxvcyBhdXRvci9lcyBkZWwgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiwgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgoK
score 13.887739
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).