Functional Central Limit Theorems and Unit Root Testing

Descripción del Articulo

This paper analyzes and employs two versions of the Functional Central Limit Theorem within the framework of a unit root with a structural break. Initial attention is focused on the probabilistic structure of the time series to be considered. Later, attention is placed on the asymptotic theory for n...

Descripción completa

Detalles Bibliográficos
Autor: Aquino Chávez, Juan Carlos
Formato: tesis de maestría
Fecha de Publicación:2011
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/28158
Enlace del recurso:http://hdl.handle.net/20.500.12404/28158
Nivel de acceso:acceso abierto
Materia:Teorema del límite central
Series (Matemáticas)
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:This paper analyzes and employs two versions of the Functional Central Limit Theorem within the framework of a unit root with a structural break. Initial attention is focused on the probabilistic structure of the time series to be considered. Later, attention is placed on the asymptotic theory for nonstationary time series proposed by Phillips (1987a), which is applied by Perron (1989) to study the e¤ects of an (assumed) exogenous structural break on the power of the augmented Dickey- Fuller test and by Zivot and Andrews (1992) to criticize the exogeneity assumption and propose a method for estimating an endogenous breakpoint. A systematic method for dealing with e¢ ciency issues is introduced by Perron and Rodríguez (2003), which extends the Generalized Least Squares detrending approach due to Elliott, Rothenberg, and Stock (1996).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).