Índices de gérmenes de foliaciones holomorfas en el plano
Descripción del Articulo
Un germen de foliación holomorfa singular en (C2, p) con singularidad aislada se dirá que es de segundo tipo si no presenta sillas-nodos tangentes en su reducción de singularidades. Entendiendo por singularidad de tipo silla-nodo tangente como aquel cuya separatriz débil está contenida en el divisor...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2021 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/19482 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/19482 |
Nivel de acceso: | acceso abierto |
Materia: | Foliaciones (Matemáticas) Curvas algebráicas https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
PUCP_9423fc0c27823f083dde458bd0f98831 |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/19482 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
Índices de gérmenes de foliaciones holomorfas en el plano |
title |
Índices de gérmenes de foliaciones holomorfas en el plano |
spellingShingle |
Índices de gérmenes de foliaciones holomorfas en el plano Cavero Chuquiviguel, Jorge Edinson Foliaciones (Matemáticas) Curvas algebráicas https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
Índices de gérmenes de foliaciones holomorfas en el plano |
title_full |
Índices de gérmenes de foliaciones holomorfas en el plano |
title_fullStr |
Índices de gérmenes de foliaciones holomorfas en el plano |
title_full_unstemmed |
Índices de gérmenes de foliaciones holomorfas en el plano |
title_sort |
Índices de gérmenes de foliaciones holomorfas en el plano |
author |
Cavero Chuquiviguel, Jorge Edinson |
author_facet |
Cavero Chuquiviguel, Jorge Edinson |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Neciosup Puican, Hernán |
dc.contributor.author.fl_str_mv |
Cavero Chuquiviguel, Jorge Edinson |
dc.subject.es_ES.fl_str_mv |
Foliaciones (Matemáticas) Curvas algebráicas |
topic |
Foliaciones (Matemáticas) Curvas algebráicas https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
Un germen de foliación holomorfa singular en (C2, p) con singularidad aislada se dirá que es de segundo tipo si no presenta sillas-nodos tangentes en su reducción de singularidades. Entendiendo por singularidad de tipo silla-nodo tangente como aquel cuya separatriz débil está contenida en el divisor excepcional. La finalidad de este trabajo es exhibir un criterio que nos permita caracterizar cuándo un germen de foliación holomorfa en (C2, p) es de segundo tipo. Para tal fin, estudiamos la teoría de índices para foliaciones holomorfas singulares sobre (C2, p). También caracterizamos las foliaciones de tipo curva generalizada, vía el índice de exceso polar. Cabe señalar que el presente trabajo es motivado por el trabajo debido a Arturo Fernández y Rogério Mol, ([FPM17]). Además de los trabajos expuestos por Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer y Rogério Mol ([GM18]). |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-16T20:50:39Z |
dc.date.available.none.fl_str_mv |
2021-06-16T20:50:39Z |
dc.date.created.none.fl_str_mv |
2021 |
dc.date.issued.fl_str_mv |
2021-06-16 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/19482 |
url |
http://hdl.handle.net/20.500.12404/19482 |
dc.language.iso.es_ES.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/cea7d681-24d3-4742-b07c-e800f4c9e597/download https://tesis.pucp.edu.pe/bitstreams/eb13fee8-2b0c-4cb7-90e4-6792b01626ce/download https://tesis.pucp.edu.pe/bitstreams/1399ceb3-6b2f-4f77-b8ba-cc34c50650a7/download https://tesis.pucp.edu.pe/bitstreams/cc36c9c8-3324-461c-8a00-cefb28fbf204/download |
bitstream.checksum.fl_str_mv |
5383d14c20644fe25a3c9bf80ae8b5c6 5a4ffbc01f1b5eb70a835dac0d501661 8a4605be74aa9ea9d79846c1fba20a33 74c49662e51a519d9809976a34f69913 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1839177545112616960 |
spelling |
Neciosup Puican, HernánCavero Chuquiviguel, Jorge Edinson2021-06-16T20:50:39Z2021-06-16T20:50:39Z20212021-06-16http://hdl.handle.net/20.500.12404/19482Un germen de foliación holomorfa singular en (C2, p) con singularidad aislada se dirá que es de segundo tipo si no presenta sillas-nodos tangentes en su reducción de singularidades. Entendiendo por singularidad de tipo silla-nodo tangente como aquel cuya separatriz débil está contenida en el divisor excepcional. La finalidad de este trabajo es exhibir un criterio que nos permita caracterizar cuándo un germen de foliación holomorfa en (C2, p) es de segundo tipo. Para tal fin, estudiamos la teoría de índices para foliaciones holomorfas singulares sobre (C2, p). También caracterizamos las foliaciones de tipo curva generalizada, vía el índice de exceso polar. Cabe señalar que el presente trabajo es motivado por el trabajo debido a Arturo Fernández y Rogério Mol, ([FPM17]). Además de los trabajos expuestos por Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer y Rogério Mol ([GM18]).A germ of singular holomorphic foliation at (C2, p) with an isolated singularity will be said of second type if it does not present tangent saddle-nodes in its reduction of singularities. Understanding by singularity of tangent saddle-node type as whose weak separatrix is contained in the exceptional divisor. The purpose of this work is to show a criterion that allows us to characterize when a germ of holomorphic foliation at (C2, p) is of second type. That is the reason why we study the theory of indices of singular holomorphic foliations at (C2, p). We also characterize generalized curve foliations, via the polar excess index. It should be noted that this work is motivated by the paper due to Arturo Fernández and Rogério Mol ([FPM17]), Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer and Rogério Mol ([GM18]).spaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Foliaciones (Matemáticas)Curvas algebráicashttps://purl.org/pe-repo/ocde/ford#1.01.00Índices de gérmenes de foliaciones holomorfas en el planoinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas40692799https://orcid.org/0000-0002-7591-034642493823541137Beltrán Cortez, Andrés WilliamNeciosup Puican, HernánFernández Pérez, Arturo Uliseshttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALCAVERO_CHUQUIVIGUEL_JORGE_ÍNDICES_GÉRMENES_FOLIACIONES.pdfCAVERO_CHUQUIVIGUEL_JORGE_ÍNDICES_GÉRMENES_FOLIACIONES.pdfTexto completoapplication/pdf1630469https://tesis.pucp.edu.pe/bitstreams/cea7d681-24d3-4742-b07c-e800f4c9e597/download5383d14c20644fe25a3c9bf80ae8b5c6MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://tesis.pucp.edu.pe/bitstreams/eb13fee8-2b0c-4cb7-90e4-6792b01626ce/download5a4ffbc01f1b5eb70a835dac0d501661MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/1399ceb3-6b2f-4f77-b8ba-cc34c50650a7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILCAVERO_CHUQUIVIGUEL_JORGE_ÍNDICES_GÉRMENES_FOLIACIONES.pdf.jpgCAVERO_CHUQUIVIGUEL_JORGE_ÍNDICES_GÉRMENES_FOLIACIONES.pdf.jpgIM Thumbnailimage/jpeg15550https://tesis.pucp.edu.pe/bitstreams/cc36c9c8-3324-461c-8a00-cefb28fbf204/download74c49662e51a519d9809976a34f69913MD54falseAnonymousREAD20.500.12404/19482oai:tesis.pucp.edu.pe:20.500.12404/194822025-07-18 17:05:17.035http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.377112 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).