Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria

Descripción del Articulo

Los modelos de diagnóstico cognitivo (MDC) tienen como finalidad describir o diagnosticar el comportamiento de los evaluados por medio de clases o perfiles latentes, de tal manera que se obtenga información más específica acerca de las fortalezas y debilidades de ellos. Uno de los modelos más popula...

Descripción completa

Detalles Bibliográficos
Autor: Sosa Paredes, Yuriko Kirilovna
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/8717
Enlace del recurso:http://hdl.handle.net/20.500.12404/8717
Nivel de acceso:acceso abierto
Materia:Estadística bayesiana
Psicometría
https://purl.org/pe-repo/ocde/ford#1.01.03
id PUCP_87860fb96e9548790139d947577dd304
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/8717
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
title Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
spellingShingle Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
Sosa Paredes, Yuriko Kirilovna
Estadística bayesiana
Psicometría
https://purl.org/pe-repo/ocde/ford#1.01.03
title_short Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
title_full Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
title_fullStr Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
title_full_unstemmed Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
title_sort Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
author Sosa Paredes, Yuriko Kirilovna
author_facet Sosa Paredes, Yuriko Kirilovna
author_role author
dc.contributor.advisor.fl_str_mv Valdivieso Serrano, Luis Hilmar
dc.contributor.author.fl_str_mv Sosa Paredes, Yuriko Kirilovna
dc.subject.es_ES.fl_str_mv Estadística bayesiana
Psicometría
topic Estadística bayesiana
Psicometría
https://purl.org/pe-repo/ocde/ford#1.01.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.03
description Los modelos de diagnóstico cognitivo (MDC) tienen como finalidad describir o diagnosticar el comportamiento de los evaluados por medio de clases o perfiles latentes, de tal manera que se obtenga información más específica acerca de las fortalezas y debilidades de ellos. Uno de los modelos más populares de esta gran familia es el llamado modelo DINA, el cual tuvo su primera aparición en Haertel (1989) enfocado principalmente en el campo educacional. Este modelo considera solo respuestas observadas dicotómicas de parte de los individuos y tiene como restricción principal que ellos deben dominar necesariamente todas las habilidades requeridas por cada ítem; aquellas que se resumen en una matriz llamada Q. Asimismo, el modelo estima parámetros para los ítems, los cuales son denominados de \ruido": Adivinación y Desliz. En este trabajo desarrolla teóricamente el modelo expuesto; es decir, sus fundamentos y principales propiedades desde el enfoque bayesiano. Específicamente, las estimaciones se realizan mediante el Muestreador de Gibbs. Se realizaron 8 estudios de simulación, cada uno de ellos con tres diferentes tamaños de población, donde se probaron combinaciones de los parámetros en estudio con el fin de comparar la recuperación de parámetros mediante el enfoque clásico y el bayesiano. El análisis de ambos enfoques se realizó con rutinas de código del software libre R, usando los paquetes CDM y dina para el enfoque clásico y el bayesiano, respectivamente. En líneas generales, los resultados muestran estimaciones insesgadas y con valores pequeños de la raíz del error cuadrático medio (RMSE) para ambos enfoques. Incluso, conforme el tamaño de la población incrementa, las estimaciones no tienen mayores diferencias. Aunque en tamaños de población más pequeños el enfoque bayesiano obtiene ligeras ventajas con respecto al otro, especialmente en el parámetro de probabilidad de pertenencia a las clases (π). Además, es necesario mencionar que los parámetros de ruido de los ítems son estimados más precisamente con el enfoque clásico en varios de los estudios. Finalmente, se presenta una aplicación enfocada en educación, donde se analiza una muestra de 3040 alumnos del 2do grado de secundaria, evaluados en una prueba de 48 ítems de la competencia matemática realizada por la Oficina de Medición de la Calidad de los Aprendizajes (UMC) en el 2015. A esta prueba se le aplica el modelo de Rasch y el modelo DINA bajo el enfoque bayesiano, con el _n de estudiar la correspondencia entre indicadores de ambos modelos, tanto para los parámetros de los alumnos (habilidad y per_les latentes) como de los ítems (dificultad y parámetros de ruido).
publishDate 2017
dc.date.accessioned.es_ES.fl_str_mv 2017-05-31T22:14:38Z
dc.date.available.es_ES.fl_str_mv 2017-05-31T22:14:38Z
dc.date.created.es_ES.fl_str_mv 2017
dc.date.issued.fl_str_mv 2017-05-31
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/8717
url http://hdl.handle.net/20.500.12404/8717
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/f6fdea77-16a8-43fd-8ad8-421d9ed7ed99/download
https://tesis.pucp.edu.pe/bitstreams/a4956d06-b5e7-419c-a3c8-4f9976ccd0a1/download
https://tesis.pucp.edu.pe/bitstreams/5c877e09-860f-4d76-aa4e-345860c3720b/download
https://tesis.pucp.edu.pe/bitstreams/ea9202ec-97cf-4cf0-8393-680c1f001d05/download
bitstream.checksum.fl_str_mv f854acf773c3555b3d873414f1d1bb01
78fbcb528ed107d89fa91de744ce17de
6f6615565f199dcaa9516389b59dc606
5aa7387e0e02c64d80236efc1afb7d63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176717475774464
spelling Valdivieso Serrano, Luis HilmarSosa Paredes, Yuriko Kirilovna2017-05-31T22:14:38Z2017-05-31T22:14:38Z20172017-05-31http://hdl.handle.net/20.500.12404/8717Los modelos de diagnóstico cognitivo (MDC) tienen como finalidad describir o diagnosticar el comportamiento de los evaluados por medio de clases o perfiles latentes, de tal manera que se obtenga información más específica acerca de las fortalezas y debilidades de ellos. Uno de los modelos más populares de esta gran familia es el llamado modelo DINA, el cual tuvo su primera aparición en Haertel (1989) enfocado principalmente en el campo educacional. Este modelo considera solo respuestas observadas dicotómicas de parte de los individuos y tiene como restricción principal que ellos deben dominar necesariamente todas las habilidades requeridas por cada ítem; aquellas que se resumen en una matriz llamada Q. Asimismo, el modelo estima parámetros para los ítems, los cuales son denominados de \ruido": Adivinación y Desliz. En este trabajo desarrolla teóricamente el modelo expuesto; es decir, sus fundamentos y principales propiedades desde el enfoque bayesiano. Específicamente, las estimaciones se realizan mediante el Muestreador de Gibbs. Se realizaron 8 estudios de simulación, cada uno de ellos con tres diferentes tamaños de población, donde se probaron combinaciones de los parámetros en estudio con el fin de comparar la recuperación de parámetros mediante el enfoque clásico y el bayesiano. El análisis de ambos enfoques se realizó con rutinas de código del software libre R, usando los paquetes CDM y dina para el enfoque clásico y el bayesiano, respectivamente. En líneas generales, los resultados muestran estimaciones insesgadas y con valores pequeños de la raíz del error cuadrático medio (RMSE) para ambos enfoques. Incluso, conforme el tamaño de la población incrementa, las estimaciones no tienen mayores diferencias. Aunque en tamaños de población más pequeños el enfoque bayesiano obtiene ligeras ventajas con respecto al otro, especialmente en el parámetro de probabilidad de pertenencia a las clases (π). Además, es necesario mencionar que los parámetros de ruido de los ítems son estimados más precisamente con el enfoque clásico en varios de los estudios. Finalmente, se presenta una aplicación enfocada en educación, donde se analiza una muestra de 3040 alumnos del 2do grado de secundaria, evaluados en una prueba de 48 ítems de la competencia matemática realizada por la Oficina de Medición de la Calidad de los Aprendizajes (UMC) en el 2015. A esta prueba se le aplica el modelo de Rasch y el modelo DINA bajo el enfoque bayesiano, con el _n de estudiar la correspondencia entre indicadores de ambos modelos, tanto para los parámetros de los alumnos (habilidad y per_les latentes) como de los ítems (dificultad y parámetros de ruido).Trabajo de investigaciónspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Estadística bayesianaPsicometríahttps://purl.org/pe-repo/ocde/ford#1.01.03Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundariainfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en EstadísticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoEstadística07958730542037https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacionORIGINALSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdfSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdfTexto completoapplication/pdf7799844https://tesis.pucp.edu.pe/bitstreams/f6fdea77-16a8-43fd-8ad8-421d9ed7ed99/downloadf854acf773c3555b3d873414f1d1bb01MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81364https://tesis.pucp.edu.pe/bitstreams/a4956d06-b5e7-419c-a3c8-4f9976ccd0a1/download78fbcb528ed107d89fa91de744ce17deMD52falseAnonymousREADTHUMBNAILSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.jpgSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.jpgIM Thumbnailimage/jpeg14933https://tesis.pucp.edu.pe/bitstreams/5c877e09-860f-4d76-aa4e-345860c3720b/download6f6615565f199dcaa9516389b59dc606MD53falseAnonymousREADTEXTSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.txtSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.txtExtracted texttext/plain232412https://tesis.pucp.edu.pe/bitstreams/ea9202ec-97cf-4cf0-8393-680c1f001d05/download5aa7387e0e02c64d80236efc1afb7d63MD54falseAnonymousREAD20.500.12404/8717oai:tesis.pucp.edu.pe:20.500.12404/87172025-07-18 13:06:12.922http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peQ29uIGxhIGF1dG9yaXphY2nDs24gZGUgZGVww7NzaXRvIGRlIG1pIHRlc2lzLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbywgdHJhbnNmb3JtYXIKKMO6bmljYW1lbnRlIG1lZGlhbnRlIHN1IHRyYWR1Y2Npw7NuIGEgb3Ryb3MgaWRpb21hcykgeSBwb25lciBhIGRpc3Bvc2ljacOzbiBkZWwgcMO6YmxpY28gbWkgdGVzaXMgKGluY2x1aWRvIGVsIHJlc3VtZW4pLCBlbiBmb3JtYXRvIGbDrXNpY28gbyBkaWdpdGFsLCBlbiBjdWFscXVpZXIgbWVkaW8sIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXJzZSwKYSB0cmF2w6lzIGRlIGxvcyBkaXZlcnNvcyBzZXJ2aWNpb3MgcHJvdmlzdG9zIHBvciBsYSBVbml2ZXJzaWRhZCwgY3JlYWRvcyBvIHBvciBjcmVhcnNlLCB0YWxlcyBjb21vIGVsIFJlcG9zaXRvcmlvIERpZ2l0YWwgZGUgVGVzaXMgUFVDUCwgQ29sZWNjacOzbiBkZSBUZXNpcywgZW50cmUgb3Ryb3MsIGVuIGVsIFBlcsO6IHkgZW4gZWwgZXh0cmFuamVybywKcG9yIGVsIHRpZW1wbyB5IHZlY2VzIHF1ZSBjb25zaWRlcmUgbmVjZXNhcmlhcywgeSBsaWJyZSBkZSByZW11bmVyYWNpb25lcy4KRW4gdmlydHVkIGRlIGRpY2hhIGxpY2VuY2lhLCBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogcG9kcsOhIHJlcHJvZHVjaXIgbWkgdGVzaXMgZW4gY3VhbHF1aWVyIHRpcG8gZGUgc29wb3J0ZSB5IGVuIG3DoXMgZGUgdW4gZWplbXBsYXIsIHNpbiBtb2RpZmljYXIgc3UgY29udGVuaWRvLCBzb2xvIGNvbgpwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4gCkRlY2xhcm8gcXVlIGxhIHRlc2lzIGVzIHVuYSBjcmVhY2nDs24gZGUgbWkgYXV0b3LDrWEgeSBleGNsdXNpdmEgdGl0dWxhcmlkYWQsIG8gY29hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sCmdhcmFudGl6byBxdWUgZGljaGEgdGVzaXMgbm8gaW5mcmluZ2UgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2VyYXMgcGVyc29uYXMuCkxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBjb25zaWduYXLDoSBlbCBub21icmUgZGVsL2xvcyBhdXRvci9lcyBkZSBsYSB0ZXNpcywgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgo=
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).