Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria
Descripción del Articulo
Los modelos de diagnóstico cognitivo (MDC) tienen como finalidad describir o diagnosticar el comportamiento de los evaluados por medio de clases o perfiles latentes, de tal manera que se obtenga información más específica acerca de las fortalezas y debilidades de ellos. Uno de los modelos más popula...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2017 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/8717 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/8717 |
| Nivel de acceso: | acceso abierto |
| Materia: | Estadística bayesiana Psicometría https://purl.org/pe-repo/ocde/ford#1.01.03 |
| id |
PUCP_87860fb96e9548790139d947577dd304 |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/8717 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria |
| title |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria |
| spellingShingle |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria Sosa Paredes, Yuriko Kirilovna Estadística bayesiana Psicometría https://purl.org/pe-repo/ocde/ford#1.01.03 |
| title_short |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria |
| title_full |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria |
| title_fullStr |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria |
| title_full_unstemmed |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria |
| title_sort |
Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundaria |
| author |
Sosa Paredes, Yuriko Kirilovna |
| author_facet |
Sosa Paredes, Yuriko Kirilovna |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Valdivieso Serrano, Luis Hilmar |
| dc.contributor.author.fl_str_mv |
Sosa Paredes, Yuriko Kirilovna |
| dc.subject.es_ES.fl_str_mv |
Estadística bayesiana Psicometría |
| topic |
Estadística bayesiana Psicometría https://purl.org/pe-repo/ocde/ford#1.01.03 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.03 |
| description |
Los modelos de diagnóstico cognitivo (MDC) tienen como finalidad describir o diagnosticar el comportamiento de los evaluados por medio de clases o perfiles latentes, de tal manera que se obtenga información más específica acerca de las fortalezas y debilidades de ellos. Uno de los modelos más populares de esta gran familia es el llamado modelo DINA, el cual tuvo su primera aparición en Haertel (1989) enfocado principalmente en el campo educacional. Este modelo considera solo respuestas observadas dicotómicas de parte de los individuos y tiene como restricción principal que ellos deben dominar necesariamente todas las habilidades requeridas por cada ítem; aquellas que se resumen en una matriz llamada Q. Asimismo, el modelo estima parámetros para los ítems, los cuales son denominados de \ruido": Adivinación y Desliz. En este trabajo desarrolla teóricamente el modelo expuesto; es decir, sus fundamentos y principales propiedades desde el enfoque bayesiano. Específicamente, las estimaciones se realizan mediante el Muestreador de Gibbs. Se realizaron 8 estudios de simulación, cada uno de ellos con tres diferentes tamaños de población, donde se probaron combinaciones de los parámetros en estudio con el fin de comparar la recuperación de parámetros mediante el enfoque clásico y el bayesiano. El análisis de ambos enfoques se realizó con rutinas de código del software libre R, usando los paquetes CDM y dina para el enfoque clásico y el bayesiano, respectivamente. En líneas generales, los resultados muestran estimaciones insesgadas y con valores pequeños de la raíz del error cuadrático medio (RMSE) para ambos enfoques. Incluso, conforme el tamaño de la población incrementa, las estimaciones no tienen mayores diferencias. Aunque en tamaños de población más pequeños el enfoque bayesiano obtiene ligeras ventajas con respecto al otro, especialmente en el parámetro de probabilidad de pertenencia a las clases (π). Además, es necesario mencionar que los parámetros de ruido de los ítems son estimados más precisamente con el enfoque clásico en varios de los estudios. Finalmente, se presenta una aplicación enfocada en educación, donde se analiza una muestra de 3040 alumnos del 2do grado de secundaria, evaluados en una prueba de 48 ítems de la competencia matemática realizada por la Oficina de Medición de la Calidad de los Aprendizajes (UMC) en el 2015. A esta prueba se le aplica el modelo de Rasch y el modelo DINA bajo el enfoque bayesiano, con el _n de estudiar la correspondencia entre indicadores de ambos modelos, tanto para los parámetros de los alumnos (habilidad y per_les latentes) como de los ítems (dificultad y parámetros de ruido). |
| publishDate |
2017 |
| dc.date.accessioned.es_ES.fl_str_mv |
2017-05-31T22:14:38Z |
| dc.date.available.es_ES.fl_str_mv |
2017-05-31T22:14:38Z |
| dc.date.created.es_ES.fl_str_mv |
2017 |
| dc.date.issued.fl_str_mv |
2017-05-31 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/8717 |
| url |
http://hdl.handle.net/20.500.12404/8717 |
| dc.language.iso.es_ES.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/f6fdea77-16a8-43fd-8ad8-421d9ed7ed99/download https://tesis.pucp.edu.pe/bitstreams/a4956d06-b5e7-419c-a3c8-4f9976ccd0a1/download https://tesis.pucp.edu.pe/bitstreams/5c877e09-860f-4d76-aa4e-345860c3720b/download https://tesis.pucp.edu.pe/bitstreams/ea9202ec-97cf-4cf0-8393-680c1f001d05/download |
| bitstream.checksum.fl_str_mv |
f854acf773c3555b3d873414f1d1bb01 78fbcb528ed107d89fa91de744ce17de 6f6615565f199dcaa9516389b59dc606 5aa7387e0e02c64d80236efc1afb7d63 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1839176717475774464 |
| spelling |
Valdivieso Serrano, Luis HilmarSosa Paredes, Yuriko Kirilovna2017-05-31T22:14:38Z2017-05-31T22:14:38Z20172017-05-31http://hdl.handle.net/20.500.12404/8717Los modelos de diagnóstico cognitivo (MDC) tienen como finalidad describir o diagnosticar el comportamiento de los evaluados por medio de clases o perfiles latentes, de tal manera que se obtenga información más específica acerca de las fortalezas y debilidades de ellos. Uno de los modelos más populares de esta gran familia es el llamado modelo DINA, el cual tuvo su primera aparición en Haertel (1989) enfocado principalmente en el campo educacional. Este modelo considera solo respuestas observadas dicotómicas de parte de los individuos y tiene como restricción principal que ellos deben dominar necesariamente todas las habilidades requeridas por cada ítem; aquellas que se resumen en una matriz llamada Q. Asimismo, el modelo estima parámetros para los ítems, los cuales son denominados de \ruido": Adivinación y Desliz. En este trabajo desarrolla teóricamente el modelo expuesto; es decir, sus fundamentos y principales propiedades desde el enfoque bayesiano. Específicamente, las estimaciones se realizan mediante el Muestreador de Gibbs. Se realizaron 8 estudios de simulación, cada uno de ellos con tres diferentes tamaños de población, donde se probaron combinaciones de los parámetros en estudio con el fin de comparar la recuperación de parámetros mediante el enfoque clásico y el bayesiano. El análisis de ambos enfoques se realizó con rutinas de código del software libre R, usando los paquetes CDM y dina para el enfoque clásico y el bayesiano, respectivamente. En líneas generales, los resultados muestran estimaciones insesgadas y con valores pequeños de la raíz del error cuadrático medio (RMSE) para ambos enfoques. Incluso, conforme el tamaño de la población incrementa, las estimaciones no tienen mayores diferencias. Aunque en tamaños de población más pequeños el enfoque bayesiano obtiene ligeras ventajas con respecto al otro, especialmente en el parámetro de probabilidad de pertenencia a las clases (π). Además, es necesario mencionar que los parámetros de ruido de los ítems son estimados más precisamente con el enfoque clásico en varios de los estudios. Finalmente, se presenta una aplicación enfocada en educación, donde se analiza una muestra de 3040 alumnos del 2do grado de secundaria, evaluados en una prueba de 48 ítems de la competencia matemática realizada por la Oficina de Medición de la Calidad de los Aprendizajes (UMC) en el 2015. A esta prueba se le aplica el modelo de Rasch y el modelo DINA bajo el enfoque bayesiano, con el _n de estudiar la correspondencia entre indicadores de ambos modelos, tanto para los parámetros de los alumnos (habilidad y per_les latentes) como de los ítems (dificultad y parámetros de ruido).Trabajo de investigaciónspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Estadística bayesianaPsicometríahttps://purl.org/pe-repo/ocde/ford#1.01.03Modelo Dina aplicado a la evaluación de matemática en estudiantes de segundo grado de secundariainfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en EstadísticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoEstadística07958730542037https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacionORIGINALSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdfSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdfTexto completoapplication/pdf7799844https://tesis.pucp.edu.pe/bitstreams/f6fdea77-16a8-43fd-8ad8-421d9ed7ed99/downloadf854acf773c3555b3d873414f1d1bb01MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81364https://tesis.pucp.edu.pe/bitstreams/a4956d06-b5e7-419c-a3c8-4f9976ccd0a1/download78fbcb528ed107d89fa91de744ce17deMD52falseAnonymousREADTHUMBNAILSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.jpgSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.jpgIM Thumbnailimage/jpeg14933https://tesis.pucp.edu.pe/bitstreams/5c877e09-860f-4d76-aa4e-345860c3720b/download6f6615565f199dcaa9516389b59dc606MD53falseAnonymousREADTEXTSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.txtSOSA_YURIKO_MODELO_DINA_ESTUDIANTES_SECUNDARIA.pdf.txtExtracted texttext/plain232412https://tesis.pucp.edu.pe/bitstreams/ea9202ec-97cf-4cf0-8393-680c1f001d05/download5aa7387e0e02c64d80236efc1afb7d63MD54falseAnonymousREAD20.500.12404/8717oai:tesis.pucp.edu.pe:20.500.12404/87172025-07-18 13:06:12.922http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peQ29uIGxhIGF1dG9yaXphY2nDs24gZGUgZGVww7NzaXRvIGRlIG1pIHRlc2lzLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbywgdHJhbnNmb3JtYXIKKMO6bmljYW1lbnRlIG1lZGlhbnRlIHN1IHRyYWR1Y2Npw7NuIGEgb3Ryb3MgaWRpb21hcykgeSBwb25lciBhIGRpc3Bvc2ljacOzbiBkZWwgcMO6YmxpY28gbWkgdGVzaXMgKGluY2x1aWRvIGVsIHJlc3VtZW4pLCBlbiBmb3JtYXRvIGbDrXNpY28gbyBkaWdpdGFsLCBlbiBjdWFscXVpZXIgbWVkaW8sIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXJzZSwKYSB0cmF2w6lzIGRlIGxvcyBkaXZlcnNvcyBzZXJ2aWNpb3MgcHJvdmlzdG9zIHBvciBsYSBVbml2ZXJzaWRhZCwgY3JlYWRvcyBvIHBvciBjcmVhcnNlLCB0YWxlcyBjb21vIGVsIFJlcG9zaXRvcmlvIERpZ2l0YWwgZGUgVGVzaXMgUFVDUCwgQ29sZWNjacOzbiBkZSBUZXNpcywgZW50cmUgb3Ryb3MsIGVuIGVsIFBlcsO6IHkgZW4gZWwgZXh0cmFuamVybywKcG9yIGVsIHRpZW1wbyB5IHZlY2VzIHF1ZSBjb25zaWRlcmUgbmVjZXNhcmlhcywgeSBsaWJyZSBkZSByZW11bmVyYWNpb25lcy4KRW4gdmlydHVkIGRlIGRpY2hhIGxpY2VuY2lhLCBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogcG9kcsOhIHJlcHJvZHVjaXIgbWkgdGVzaXMgZW4gY3VhbHF1aWVyIHRpcG8gZGUgc29wb3J0ZSB5IGVuIG3DoXMgZGUgdW4gZWplbXBsYXIsIHNpbiBtb2RpZmljYXIgc3UgY29udGVuaWRvLCBzb2xvIGNvbgpwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4gCkRlY2xhcm8gcXVlIGxhIHRlc2lzIGVzIHVuYSBjcmVhY2nDs24gZGUgbWkgYXV0b3LDrWEgeSBleGNsdXNpdmEgdGl0dWxhcmlkYWQsIG8gY29hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sCmdhcmFudGl6byBxdWUgZGljaGEgdGVzaXMgbm8gaW5mcmluZ2UgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2VyYXMgcGVyc29uYXMuCkxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBjb25zaWduYXLDoSBlbCBub21icmUgZGVsL2xvcyBhdXRvci9lcyBkZSBsYSB0ZXNpcywgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgo= |
| score |
13.394457 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).