Minimal possible counterexamples to the two-dimensional Jacobian Conjecture

Descripción del Articulo

Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It...

Descripción completa

Detalles Bibliográficos
Autor: Horruitiner Mendoza, Rodrigo Manuel
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/14385
Enlace del recurso:http://hdl.handle.net/20.500.12404/14385
Nivel de acceso:acceso abierto
Materia:Polinomios
Geometría algebraica
Automorfismo
https://purl.org/pe-repo/ocde/ford#1.01.00
id PUCP_76c09b9d298af28dd9b779ede54c32a7
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/14385
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
spellingShingle Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
Horruitiner Mendoza, Rodrigo Manuel
Polinomios
Geometría algebraica
Automorfismo
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_full Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_fullStr Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_full_unstemmed Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
title_sort Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
author Horruitiner Mendoza, Rodrigo Manuel
author_facet Horruitiner Mendoza, Rodrigo Manuel
author_role author
dc.contributor.advisor.fl_str_mv Valqui Hasse, Christian Holger
dc.contributor.author.fl_str_mv Horruitiner Mendoza, Rodrigo Manuel
dc.subject.es_ES.fl_str_mv Polinomios
Geometría algebraica
Automorfismo
topic Polinomios
Geometría algebraica
Automorfismo
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture.
publishDate 2018
dc.date.created.es_ES.fl_str_mv 2018
dc.date.accessioned.es_ES.fl_str_mv 2019-06-13T02:22:02Z
dc.date.available.es_ES.fl_str_mv 2019-06-13T02:22:02Z
dc.date.issued.fl_str_mv 2019-06-12
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/14385
url http://hdl.handle.net/20.500.12404/14385
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/298862a0-a7f7-49fb-8388-807907f1f064/download
https://tesis.pucp.edu.pe/bitstreams/cb01f4ac-52c5-4f62-9a77-a5e01577e9c4/download
https://tesis.pucp.edu.pe/bitstreams/5c7189c5-f66c-4249-b218-c73433f519b6/download
https://tesis.pucp.edu.pe/bitstreams/25fd2b3a-d4b3-4e1d-880a-391834ec49ef/download
https://tesis.pucp.edu.pe/bitstreams/6f1be123-90a7-4734-8e2a-559355a8ac0d/download
bitstream.checksum.fl_str_mv d83a7dd66defe82ecbb2355628d5bac5
63e069777db1d022a8dc5e82df4e9160
35481b2c8d414f16a5a053be5878fdb5
f0afa3ecf53751cb678c1ad3e0409cc6
727e0c3ed715c4b5658cff1881385f28
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834737073047732224
spelling Valqui Hasse, Christian HolgerHorruitiner Mendoza, Rodrigo Manuel2019-06-13T02:22:02Z2019-06-13T02:22:02Z20182019-06-12http://hdl.handle.net/20.500.12404/14385Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture.Sea K un cuerpo algebraicamente cerrado de característica zero. La Conjetura del Jacobiano en dimensión dos postulada por Keller en [8] dice que cualquier par de polinomios P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (un par Jacobiano) define un automofismo de L via x-> P and y -> Q. Resulta que los polígonos de Newton de tal par de polinomios están relacionados íntimamente, y al analizarlos, mucha información puede ser obtenida sobre condiciones que un par Jacobiano debe satisfacer. Específicamente, si existe un par Jacobiano que no define un automorfismo (un contraejemplo) entonces sus polígonos de Newton deben satisfacer condiciones geométricas bastante restrictivas. Basado en gran parte en el trabajo en [1], presentamos un algoritmo para dar una descripción geométrica precisa de posibles contraejemplos. Esto significa que, asumiendo que (P;Q) es un contraejemplo a la Conjetura del Jacobiano con gcd(deg(P); deg(Q)) = k, podemos generar las posibles formas del Polígono de Newton de P y Q y cómo se transforman bajo ciertos automorfismos lineales. Al analizar los posibles contraejemplos minimales, esbozamos un camino para incrementar la cota inferior de max(deg(P); deg(Q)) a 125 para un posible contraejemplo minimal a la Conjetura del Jacobiano.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/pe/PolinomiosGeometría algebraicaAutomorfismohttps://purl.org/pe-repo/ocde/ford#1.01.00Minimal possible counterexamples to the two-dimensional Jacobian Conjectureinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas09381458541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdfHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdfTexto completoapplication/pdf584439https://tesis.pucp.edu.pe/bitstreams/298862a0-a7f7-49fb-8388-807907f1f064/downloadd83a7dd66defe82ecbb2355628d5bac5MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81030https://tesis.pucp.edu.pe/bitstreams/cb01f4ac-52c5-4f62-9a77-a5e01577e9c4/download63e069777db1d022a8dc5e82df4e9160MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81650https://tesis.pucp.edu.pe/bitstreams/5c7189c5-f66c-4249-b218-c73433f519b6/download35481b2c8d414f16a5a053be5878fdb5MD53falseAnonymousREADTHUMBNAILHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.jpgHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.jpgIM Thumbnailimage/jpeg10980https://tesis.pucp.edu.pe/bitstreams/25fd2b3a-d4b3-4e1d-880a-391834ec49ef/downloadf0afa3ecf53751cb678c1ad3e0409cc6MD54falseAnonymousREADTEXTHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.txtHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.txtExtracted texttext/plain81378https://tesis.pucp.edu.pe/bitstreams/6f1be123-90a7-4734-8e2a-559355a8ac0d/download727e0c3ed715c4b5658cff1881385f28MD55falseAnonymousREAD20.500.12404/14385oai:tesis.pucp.edu.pe:20.500.12404/143852024-12-03 12:11:09.22http://creativecommons.org/licenses/by-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTElDRU5DSUEgRVNUw4FOREFSCgpCYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcywgYXV0b3Jpem8gZWwgZGVww7NzaXRvIGRlIG1pIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLiAKCkNvbiBsYSBhdXRvcml6YWNpw7NuIGRlIGRlcMOzc2l0byBkZSBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbyB0cmFuc2Zvcm1hciAow7puaWNhbWVudGUgbWVkaWFudGUgc3UgdHJhZHVjY2nDs24gYSBvdHJvcyBpZGlvbWFzKSB5IHBvbmVyIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIChpbmNsdWlkbyBlbCByZXN1bWVuKSwgZW4gZm9ybWF0byBmw61zaWNvIG8gZGlnaXRhbCwgZW4gY3VhbHF1aWVyIG1lZGlvLCBjb25vY2lkbyBwb3IgY29ub2NlcnNlLCBhIHRyYXbDqXMgZGUgbG9zIGRpdmVyc29zIHNlcnZpY2lvcyBwcm92aXN0b3MgcG9yIGxhIFVuaXZlcnNpZGFkLCBjcmVhZG9zIG8gcG9yIGNyZWFyc2UsIHRhbGVzIGNvbW8gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLCBjb2xlY2Npw7NuIGRlIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuLCBlbnRyZSBvdHJvcywgZW4gZWwgUGVyw7ogeSBlbiBlbCBleHRyYW5qZXJvLCBwb3IgZWwgdGllbXBvIHkgdmVjZXMgcXVlIGNvbnNpZGVyZSBuZWNlc2FyaWFzLCB5IGxpYnJlIGRlIHJlbXVuZXJhY2lvbmVzLiBFbiB2aXJ0dWQgZGUgZGljaGEgbGljZW5jaWEsIGxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBwb2Ryw6EgcmVwcm9kdWNpciBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGVuIGN1YWxxdWllciB0aXBvIGRlIHNvcG9ydGUgeSBlbiBtw6FzIGRlIHVuIGVqZW1wbGFyLCBzaW4gbW9kaWZpY2FyIHN1IGNvbnRlbmlkbywgc29sbyBjb24gcHJvcMOzc2l0b3MgZGUgc2VndXJpZGFkLCByZXNwYWxkbyB5IHByZXNlcnZhY2nDs24uIERlY2xhcm8gcXVlIGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZXMgdW5hIGNyZWFjacOzbiBkZSBtaSBhdXRvcsOtYSB5IGV4Y2x1c2l2YSB0aXR1bGFyaWRhZCwgbyBjby1hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sIGdhcmFudGl6byBxdWUgZGljaG8gdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiBubyBpbmZyaW5nZSBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJhcyBwZXJzb25hcy4gTGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBDYXTDs2xpY2EgZGVsIFBlcsO6IGNvbnNpZ25hcsOhIGVsIG5vbWJyZSBkZWwvIGxvcyBhdXRvci9lcyBkZWwgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiwgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgoK
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).