Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
Descripción del Articulo
Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2018 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | inglés |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/14385 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/14385 |
Nivel de acceso: | acceso abierto |
Materia: | Polinomios Geometría algebraica Automorfismo https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
PUCP_76c09b9d298af28dd9b779ede54c32a7 |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/14385 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture |
title |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture |
spellingShingle |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture Horruitiner Mendoza, Rodrigo Manuel Polinomios Geometría algebraica Automorfismo https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture |
title_full |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture |
title_fullStr |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture |
title_full_unstemmed |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture |
title_sort |
Minimal possible counterexamples to the two-dimensional Jacobian Conjecture |
author |
Horruitiner Mendoza, Rodrigo Manuel |
author_facet |
Horruitiner Mendoza, Rodrigo Manuel |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Valqui Hasse, Christian Holger |
dc.contributor.author.fl_str_mv |
Horruitiner Mendoza, Rodrigo Manuel |
dc.subject.es_ES.fl_str_mv |
Polinomios Geometría algebraica Automorfismo |
topic |
Polinomios Geometría algebraica Automorfismo https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture. |
publishDate |
2018 |
dc.date.created.es_ES.fl_str_mv |
2018 |
dc.date.accessioned.es_ES.fl_str_mv |
2019-06-13T02:22:02Z |
dc.date.available.es_ES.fl_str_mv |
2019-06-13T02:22:02Z |
dc.date.issued.fl_str_mv |
2019-06-12 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/14385 |
url |
http://hdl.handle.net/20.500.12404/14385 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/298862a0-a7f7-49fb-8388-807907f1f064/download https://tesis.pucp.edu.pe/bitstreams/cb01f4ac-52c5-4f62-9a77-a5e01577e9c4/download https://tesis.pucp.edu.pe/bitstreams/5c7189c5-f66c-4249-b218-c73433f519b6/download https://tesis.pucp.edu.pe/bitstreams/25fd2b3a-d4b3-4e1d-880a-391834ec49ef/download https://tesis.pucp.edu.pe/bitstreams/6f1be123-90a7-4734-8e2a-559355a8ac0d/download |
bitstream.checksum.fl_str_mv |
d83a7dd66defe82ecbb2355628d5bac5 63e069777db1d022a8dc5e82df4e9160 35481b2c8d414f16a5a053be5878fdb5 f0afa3ecf53751cb678c1ad3e0409cc6 727e0c3ed715c4b5658cff1881385f28 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1834737073047732224 |
spelling |
Valqui Hasse, Christian HolgerHorruitiner Mendoza, Rodrigo Manuel2019-06-13T02:22:02Z2019-06-13T02:22:02Z20182019-06-12http://hdl.handle.net/20.500.12404/14385Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture.Sea K un cuerpo algebraicamente cerrado de característica zero. La Conjetura del Jacobiano en dimensión dos postulada por Keller en [8] dice que cualquier par de polinomios P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (un par Jacobiano) define un automofismo de L via x-> P and y -> Q. Resulta que los polígonos de Newton de tal par de polinomios están relacionados íntimamente, y al analizarlos, mucha información puede ser obtenida sobre condiciones que un par Jacobiano debe satisfacer. Específicamente, si existe un par Jacobiano que no define un automorfismo (un contraejemplo) entonces sus polígonos de Newton deben satisfacer condiciones geométricas bastante restrictivas. Basado en gran parte en el trabajo en [1], presentamos un algoritmo para dar una descripción geométrica precisa de posibles contraejemplos. Esto significa que, asumiendo que (P;Q) es un contraejemplo a la Conjetura del Jacobiano con gcd(deg(P); deg(Q)) = k, podemos generar las posibles formas del Polígono de Newton de P y Q y cómo se transforman bajo ciertos automorfismos lineales. Al analizar los posibles contraejemplos minimales, esbozamos un camino para incrementar la cota inferior de max(deg(P); deg(Q)) a 125 para un posible contraejemplo minimal a la Conjetura del Jacobiano.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/pe/PolinomiosGeometría algebraicaAutomorfismohttps://purl.org/pe-repo/ocde/ford#1.01.00Minimal possible counterexamples to the two-dimensional Jacobian Conjectureinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas09381458541137https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdfHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdfTexto completoapplication/pdf584439https://tesis.pucp.edu.pe/bitstreams/298862a0-a7f7-49fb-8388-807907f1f064/downloadd83a7dd66defe82ecbb2355628d5bac5MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81030https://tesis.pucp.edu.pe/bitstreams/cb01f4ac-52c5-4f62-9a77-a5e01577e9c4/download63e069777db1d022a8dc5e82df4e9160MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81650https://tesis.pucp.edu.pe/bitstreams/5c7189c5-f66c-4249-b218-c73433f519b6/download35481b2c8d414f16a5a053be5878fdb5MD53falseAnonymousREADTHUMBNAILHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.jpgHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.jpgIM Thumbnailimage/jpeg10980https://tesis.pucp.edu.pe/bitstreams/25fd2b3a-d4b3-4e1d-880a-391834ec49ef/downloadf0afa3ecf53751cb678c1ad3e0409cc6MD54falseAnonymousREADTEXTHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.txtHORRUITINER_MENDOZA_RODRIGO_MANUEL.pdf.txtExtracted texttext/plain81378https://tesis.pucp.edu.pe/bitstreams/6f1be123-90a7-4734-8e2a-559355a8ac0d/download727e0c3ed715c4b5658cff1881385f28MD55falseAnonymousREAD20.500.12404/14385oai:tesis.pucp.edu.pe:20.500.12404/143852024-12-03 12:11:09.22http://creativecommons.org/licenses/by-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTElDRU5DSUEgRVNUw4FOREFSCgpCYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcywgYXV0b3Jpem8gZWwgZGVww7NzaXRvIGRlIG1pIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLiAKCkNvbiBsYSBhdXRvcml6YWNpw7NuIGRlIGRlcMOzc2l0byBkZSBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbyB0cmFuc2Zvcm1hciAow7puaWNhbWVudGUgbWVkaWFudGUgc3UgdHJhZHVjY2nDs24gYSBvdHJvcyBpZGlvbWFzKSB5IHBvbmVyIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIChpbmNsdWlkbyBlbCByZXN1bWVuKSwgZW4gZm9ybWF0byBmw61zaWNvIG8gZGlnaXRhbCwgZW4gY3VhbHF1aWVyIG1lZGlvLCBjb25vY2lkbyBwb3IgY29ub2NlcnNlLCBhIHRyYXbDqXMgZGUgbG9zIGRpdmVyc29zIHNlcnZpY2lvcyBwcm92aXN0b3MgcG9yIGxhIFVuaXZlcnNpZGFkLCBjcmVhZG9zIG8gcG9yIGNyZWFyc2UsIHRhbGVzIGNvbW8gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLCBjb2xlY2Npw7NuIGRlIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuLCBlbnRyZSBvdHJvcywgZW4gZWwgUGVyw7ogeSBlbiBlbCBleHRyYW5qZXJvLCBwb3IgZWwgdGllbXBvIHkgdmVjZXMgcXVlIGNvbnNpZGVyZSBuZWNlc2FyaWFzLCB5IGxpYnJlIGRlIHJlbXVuZXJhY2lvbmVzLiBFbiB2aXJ0dWQgZGUgZGljaGEgbGljZW5jaWEsIGxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBwb2Ryw6EgcmVwcm9kdWNpciBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGVuIGN1YWxxdWllciB0aXBvIGRlIHNvcG9ydGUgeSBlbiBtw6FzIGRlIHVuIGVqZW1wbGFyLCBzaW4gbW9kaWZpY2FyIHN1IGNvbnRlbmlkbywgc29sbyBjb24gcHJvcMOzc2l0b3MgZGUgc2VndXJpZGFkLCByZXNwYWxkbyB5IHByZXNlcnZhY2nDs24uIERlY2xhcm8gcXVlIGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZXMgdW5hIGNyZWFjacOzbiBkZSBtaSBhdXRvcsOtYSB5IGV4Y2x1c2l2YSB0aXR1bGFyaWRhZCwgbyBjby1hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sIGdhcmFudGl6byBxdWUgZGljaG8gdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiBubyBpbmZyaW5nZSBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJhcyBwZXJzb25hcy4gTGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBDYXTDs2xpY2EgZGVsIFBlcsO6IGNvbnNpZ25hcsOhIGVsIG5vbWJyZSBkZWwvIGxvcyBhdXRvci9lcyBkZWwgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiwgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgoK |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).