Sistema de detección de fallas para un motor DC mediante filtros de Kalman

Descripción del Articulo

Las metodologías para la determinación e identificación de fallas en procesos industriales viene siendo desarrollada e investigada desde hace 30 años, en los cuales se han elaborado una gran variedad de metodologías de detección y de aplicaciones a sistemas reales. Debido al aumento de la complejida...

Descripción completa

Detalles Bibliográficos
Autor: Dubois Farfán, Jan-André
Formato: tesis de grado
Fecha de Publicación:2011
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/817
Enlace del recurso:http://hdl.handle.net/20.500.12404/817
Nivel de acceso:acceso abierto
Materia:Motores eléctricos de corriente continua
Filtración Kalman
https://purl.org/pe-repo/ocde/ford#2.02.01
id PUCP_707f5df0ff3edceed762a70adc112f22
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/817
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Sistema de detección de fallas para un motor DC mediante filtros de Kalman
title Sistema de detección de fallas para un motor DC mediante filtros de Kalman
spellingShingle Sistema de detección de fallas para un motor DC mediante filtros de Kalman
Dubois Farfán, Jan-André
Motores eléctricos de corriente continua
Filtración Kalman
https://purl.org/pe-repo/ocde/ford#2.02.01
title_short Sistema de detección de fallas para un motor DC mediante filtros de Kalman
title_full Sistema de detección de fallas para un motor DC mediante filtros de Kalman
title_fullStr Sistema de detección de fallas para un motor DC mediante filtros de Kalman
title_full_unstemmed Sistema de detección de fallas para un motor DC mediante filtros de Kalman
title_sort Sistema de detección de fallas para un motor DC mediante filtros de Kalman
author Dubois Farfán, Jan-André
author_facet Dubois Farfán, Jan-André
author_role author
dc.contributor.author.fl_str_mv Dubois Farfán, Jan-André
dc.subject.es_ES.fl_str_mv Motores eléctricos de corriente continua
Filtración Kalman
topic Motores eléctricos de corriente continua
Filtración Kalman
https://purl.org/pe-repo/ocde/ford#2.02.01
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.01
description Las metodologías para la determinación e identificación de fallas en procesos industriales viene siendo desarrollada e investigada desde hace 30 años, en los cuales se han elaborado una gran variedad de metodologías de detección y de aplicaciones a sistemas reales. Debido al aumento de la complejidad y cantidad de los procesos que necesitan ser controlados, surgen teorías para la detección e identificación de fallas como solución a problemas de repercusión no solo económica, sino también ecológica, productiva y de seguridad. En la presente tesis se ha desarrollado un método de detección e identificación basado en una innovación proveniente del filtro de Kalman, la cual provee condiciones suficientes y necesarias para la detección de fallas aditivas bajo influencia de ruido gaussiano blanco. Esta metodología de detección se aplica a un motor de corriente contínua de excitación independiente, cuya función de transferencia tipo SISO ha sido obtenida experimentalmente. Posteriormente un análisis estadístico de la innovación obtenida del filtro de Kalman, ha permitido diagnosticar la presencia e instante de la falla aditiva generada en el sensor del sistema. Lo anterior ha generado un sistema capaz de detectar fallas aditivas idealizadas como modelos tipo escalones y rampas en un sistema lineal e invariante en el tiempo. El sistema desarrollado, permite la correcta detección e identificación de las fallas aditivas presentes en el sensor del modelo del motor de corriente continua, basándose en el análisis estadístico del parámetro innovación proveniente del Filtro de Kalman.
publishDate 2011
dc.date.accessioned.es_ES.fl_str_mv 2011-10-04T18:44:08Z
dc.date.available.es_ES.fl_str_mv 2011-10-04T18:44:08Z
dc.date.created.es_ES.fl_str_mv 2011
dc.date.issued.fl_str_mv 2011-10-04
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/817
url http://hdl.handle.net/20.500.12404/817
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/63161738-f674-4357-b040-8eaff29ff288/download
https://tesis.pucp.edu.pe/bitstreams/6d4e54db-3d54-487f-becf-2131a409ecef/download
https://tesis.pucp.edu.pe/bitstreams/54db91e1-7354-4709-b21b-1f7a3d4054b8/download
https://tesis.pucp.edu.pe/bitstreams/321f7bad-c8b8-4adc-92e8-e8ac71a7f207/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
294b3c5a0ef1f59121935cfbe7f14e09
72589b8b42d60522756f35a540fbea89
387fb0c8ebcd988efd9cd302bda348f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834736855589847040
spelling Dubois Farfán, Jan-André2011-10-04T18:44:08Z2011-10-04T18:44:08Z20112011-10-04http://hdl.handle.net/20.500.12404/817Las metodologías para la determinación e identificación de fallas en procesos industriales viene siendo desarrollada e investigada desde hace 30 años, en los cuales se han elaborado una gran variedad de metodologías de detección y de aplicaciones a sistemas reales. Debido al aumento de la complejidad y cantidad de los procesos que necesitan ser controlados, surgen teorías para la detección e identificación de fallas como solución a problemas de repercusión no solo económica, sino también ecológica, productiva y de seguridad. En la presente tesis se ha desarrollado un método de detección e identificación basado en una innovación proveniente del filtro de Kalman, la cual provee condiciones suficientes y necesarias para la detección de fallas aditivas bajo influencia de ruido gaussiano blanco. Esta metodología de detección se aplica a un motor de corriente contínua de excitación independiente, cuya función de transferencia tipo SISO ha sido obtenida experimentalmente. Posteriormente un análisis estadístico de la innovación obtenida del filtro de Kalman, ha permitido diagnosticar la presencia e instante de la falla aditiva generada en el sensor del sistema. Lo anterior ha generado un sistema capaz de detectar fallas aditivas idealizadas como modelos tipo escalones y rampas en un sistema lineal e invariante en el tiempo. El sistema desarrollado, permite la correcta detección e identificación de las fallas aditivas presentes en el sensor del modelo del motor de corriente continua, basándose en el análisis estadístico del parámetro innovación proveniente del Filtro de Kalman.TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Motores eléctricos de corriente continuaFiltración Kalmanhttps://purl.org/pe-repo/ocde/ford#2.02.01Sistema de detección de fallas para un motor DC mediante filtros de Kalmaninfo:eu-repo/semantics/bachelorThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUIngeniero ElectrónicoTítulo ProfesionalPontificia Universidad Católica del Perú. Facultad de Ciencias e IngenieríaIngeniería Electrónica712026https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/63161738-f674-4357-b040-8eaff29ff288/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADORIGINALDUBOIS_FARFAN_JAN-ANDRE_DETECCION_FALLAS_FILTROS_KALMAN.pdfDUBOIS_FARFAN_JAN-ANDRE_DETECCION_FALLAS_FILTROS_KALMAN.pdfapplication/pdf3082874https://tesis.pucp.edu.pe/bitstreams/6d4e54db-3d54-487f-becf-2131a409ecef/download294b3c5a0ef1f59121935cfbe7f14e09MD51trueAnonymousREADTEXTDUBOIS_FARFAN_JAN-ANDRE_DETECCION_FALLAS_FILTROS_KALMAN.pdf.txtDUBOIS_FARFAN_JAN-ANDRE_DETECCION_FALLAS_FILTROS_KALMAN.pdf.txtExtracted texttext/plain129263https://tesis.pucp.edu.pe/bitstreams/54db91e1-7354-4709-b21b-1f7a3d4054b8/download72589b8b42d60522756f35a540fbea89MD55falseAnonymousREADTHUMBNAILDUBOIS_FARFAN_JAN-ANDRE_DETECCION_FALLAS_FILTROS_KALMAN.pdf.jpgDUBOIS_FARFAN_JAN-ANDRE_DETECCION_FALLAS_FILTROS_KALMAN.pdf.jpgIM Thumbnailimage/jpeg26455https://tesis.pucp.edu.pe/bitstreams/321f7bad-c8b8-4adc-92e8-e8ac71a7f207/download387fb0c8ebcd988efd9cd302bda348f0MD56falseAnonymousREAD20.500.12404/817oai:tesis.pucp.edu.pe:20.500.12404/8172025-03-12 17:48:33.596http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.871716
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).